County of Fresno

NOTICE OF INTENT TO ADOPT A MITIGATED NEGATIVE DECLARATION

Notice is hereby given that the County of Fresno has prepared Initial Study Application (IS) No. 7410 pursuant to the requirements of the California Environmental Quality Act for the following proposed project:

Abstract

INITIAL STUDY APPLICATION NO. 7410, CLASSIFIED CONDITIONAL USE PERMIT APPLICATION NO. 3597 and MINOR VARIANCE APPLICATION NO. 1287 filed by KINGS RIVER PACKING, proposing to amend Classified Conditional Use Permit (CUP) No. 3476 in order to allow expansion of an existing fruit packing and storage facility in the AE-20 (Exclusive Agricultural, 20-acre minimum parcel size) and AL-40 (Limited Agricultural, 40-acre minimum parcel size) Zone Districts, including authorization of a 39 -foot building height (35 -foot maximum building height allowed) for a proposed building addition to be partially located in the AL-40 (Limited Agricultural, 40 -acre minimum parcel size) and AE-20 (Exclusive Agricultural, 20-acre minimum parcel size) Zone Districts, and a 38 -foot building height (35 -foot maximum building height allowed) for a proposed building addition to be located in the AE-20 (Exclusive Agricultural, 20 -acre minimum parcel size) Zone District. The project site is located on the east side of Trimmer Springs Road, approximately three quarters of a mile north of its intersection with Belmont Avenue, approximately three miles southwest of the unincorporated community of Piedra (21095 E. Trimmer Springs Road) (SUP. DIST. 5) (APNs 158-070-65, 158-070-69, 158-070-76, 158-070-77). Adopt the Mitigated Negative Declaration prepared for Initial Study Application No. 7410 and take action on Classified Conditional Use Permit Application No. 3597 and Minor Variance Application No. 1287.

(hereafter, the "Proposed Project")
The County of Fresno has determined that it is appropriate to adopt a Mitigated Negative Declaration for the Proposed Project. The purpose of this Notice is to (1) provide notice of the availability of IS Application No. 7410 and the draft Mitigated Negative Declaration, and request written comments thereon; and (2) provide notice of the public hearing regarding the Proposed Project.

Public Comment Period

The County of Fresno will receive written comments on the Proposed Project and Mitigated Negative Declaration from June 8, 2018 through June 27, 2018.

Email written comments to dchambers@co.fresno.ca.us, or mail comments to:
Fresno County Department of Public Works and Planning Development Services and Capital Projects Division
Attn: Derek Chambers

2220 Tulare Street, Suite A
Fresno, CA 93721
IS Application No. 7410 and the draft Mitigated Negative Declaration may be viewed at the above address Monday through Thursday, 9:00 a.m. to 5:00 p.m., and Friday, 8:30 a.m. to 12:30 p.m. (except holidays). An electronic copy of the draft Mitigated Negative Declaration for the Proposed Project may be obtained from Derek Chambers at the addresses above.

Public Hearing

The Planning Commission will hold a public hearing to consider approving the Proposed Project and the Mitigated Negative Declaration on June 28, 2018, at 8:45 a.m., or as soon thereafter as possible, in Room 301, Hall of Records, 2281 Tulare Street, Fresno, California 93721. Interested persons are invited to appear at the hearing and comment on the Proposed Project and draft Mitigated Negative Declaration.

For questions please call Derek Chambers (559) 600-4205.
Published: June 8, 2018

EXISTING ZONING MAP

File original and one copy with:
Fresno County Clerk
2221 Kern Street
Fresno, California 93721

Space Below For County Clerk Only.

CLK-2046.00 E04-73 R00-00

Applicant (Name): Kings River Packing

Project Description:
Amend Classified Conditional Use Permit (CUP) No. 3476 in order to allow expansion of an existing fruit packing and storage facility in the AE-20 (Exclusive Agricultural, 20-acre minimum parcel size) and AL-40 (Limited Agricultural, 40-acre minimum parcel size) Zone Districts, including authorization of a 39 -foot building height (35 -foot maximum building height allowed) for a proposed building addition to be partially located in the AL-40 (Limited Agricultural, 40-acre minimum parcel size) and AE-20 (Exclusive Agricultural, 20 -acre minimum parcel size) Zone Districts, and a 38 -foot building height (35 -foot maximum building height allowed) for a proposed building addition to be located in the AE-20 (Exclusive Agricultural, 20acre minimum parcel size) Zone District. The project site is located on the east side of Trimmer Springs Road, approximately three quarters of a mile north of its intersection with Belmont Avenue, approximately three miles southwest of the unincorporated community of Piedra (21095 E. Trimmer Springs Road) (SUP. DIST. 5) (APNs 158-070-65, 158-07069, 158-070-76, 158-070-77).
Justification for Negative Declaration:
Based upon the Initial Study prepared for Classified Conditional Use Permit Application No. 3597 and Minor Variance Application No. 1287, staff has concluded that the project will not have a significant effect on the environment.

No impacts were identified related to population and housing, or recreation.
Potential impacts related to agricultural and forestry resources, biological resources, geology and soils, greenhouse gas emissions, hazards and hazardous materials, hydrology and water quality, land use and planning, mineral resources, noise, public services, and utilities and service systems have been determined to be less than significant.

Potential impacts relating to aesthetics, air quality, cultural resources, and transportation and traffic have been determined to be less than significant with the identified Mitigation Measures.

The Initial Study and MND are available for review at 2220 Tulare Street, Suite A, Fresno, CA 93721.

FINDING:

The proposed project will not have a significant impact on the environment.
Newspaper and Date of Publication:
Review Date Deadline:
Fresno Business Journal - June 8, 2018

Date:	Type or Print Signature:

June 8, $2018 \quad$ Marianne Mollring
Senior Planner

Project Title: Classified Conditional Use Permit Application No. 3597 and Minor Variance Application No. 1287

County of Fresno

INITIAL STUDY ENVIRONMENTAL CHECKLIST FORM

1. Project title:

Initial Study Application No. 7410, Classified Conditional Use Permit Application No. 3597 and Minor Variance Application No. 1287
2. Lead agency name and address:

Fresno County Department of Public Works and Planning
Development Services Division
2220 Tulare Street, 6th Floor
Fresno, CA 93721-2104
3. Contact person and phone number:

Derek Chambers, (559) 600-4205
4. Project location:

The project site is located on the east side of Trimmer Springs Road, approximately three miles north of its intersection with Belmont Avenue, approximately three miles southwest of the unincorporated community of Piedra (21095 E. Trimmer Springs Road) (SUP. DIST. 5) (APNs 158-070-65, 158-070-69, 158-070-76, 158-07077).
5. Project Applicant's name and address:

Kings River Packing
c/o Frank Flores
21083 E. Trimmer Springs Road
Sanger, CA 93657
6. General Plan designation:

Agriculture in the County-adopted Kings River Regional Plan
7. Zoning:

AE-20 (Exclusive Agricultural, 20-acre minimum parcel size) and AL-40 (Limited Agricultural, 40-acre minimum parcel size)
8. Description of project: (Describe the whole action involved, including but not limited to later phases of the project, and any secondary, support, or off-site features necessary for its implementation. Attach additional sheets if necessary.)

This proposal entails the phased expansion of an existing 10.89-acre commercial fruit packing operation by an additional 5.75 acres of processing, storage, and office space in the AL-40 (Limited Agricultural, 40-acre minimum parcel size) and AE-20 (Exclusive Agricultural, 20-acre minimum parcel size) Zone Districts. Phase I of this expansion proposal includes construction of a loading dock and a 77,500 square-foot addition to an existing metal building to be utilized for fruit cold storage and office space. Phase II of this expansion proposal includes construction of a 173,000 square-foot addition to an existing metal building to be utilized for fruit packing and office space. The proposed 77,500 square-foot addition will have an overall building height of approximately 39 feet, and the proposed 173,000 square-foot addition will have an overall building height of approximately 38 feet, whereas the AL-40 (Limited Agricultural, 40-acre minimum parcel size) and AE-20 (Exclusive Agricultural, 20-acre minimum parcel size) Zone Districts permit a 35 -foot maximum building height. As such, Minor Variance

Application No. 1287 is being concurrently processed with Classified Conditional Use Permit Application No. 3597 so as to allow the proposed 39 -foot and 38 -foot building heights.

The existing commercial fruit packing operation was originally authorized by Classified Conditional Use Permit (CUP) No. 2786, and was subsequently expanded by CUP No. 3307 and CUP No. 3476. Currently, the existing commercial fruit packing operation is located on an approximately 28.83-acre parcel identified as Assessor's Parcel Numbers (APNs) 158-070-65, 158-070-69, 158-070-76 and 158-070-77, which is partially located in the AL-40 (Limited Agricultural, 40-acre minimum parcel size) and AE-20 (Exclusive Agricultural, 20-acre minimum parcel size) Zone Districts.

9. Surrounding land uses and setting: Briefly describe the project's surroundings:

The subject parcel is located in an agricultural area comprised primarily of orchards with few residential land uses dispersed throughout. Additionally, portions of the Kings River and the Fresno Irrigation District Gould Canal are easterly adjacent to the subject parcel, and the Friant-Kern Canal is located approximately one and a half-mile south of the subject parcel.

A portion of Trimmer Springs Road, which is identified as a Scenic Drive in the Fresno County General Plan, abuts a western property line of the subject parcel. Policy OS-L. 3 of the General Plan typically requires intensive land use proposals such as commercial developments to be developed with a 200 -foot natural open space area adjacent to the Scenic Drive. General Plan Policy OS-L. 3 also allows this 200-foot natural space setback requirement to be modified for proposals which involve the expansion of an existing facility. In this case, the existing commercial fruit packing operation currently encroaches into the typically required 200-foot natural open space area. The proposed improvements would be setback farther from Trimmer Springs Road than the existing commercial fruit packing operation; however, the proposed improvements would be located within the typically required 200 -foot natural open space area. As such, drought-tolerant landscaping shall be provided along the western property line of the subject parcel where said property line abuts Trimmer Springs Road. Further, said landscaping shall be maintained in healthful condition and shall consist of trees and shrubs of reasonable size and density to provide visual screening. This landscaping requirement will be included as a Mitigation Measure to reduce the proposal's aesthetic impacts on Trimmer Springs Road to a less than significant level. Additionally, the design of the required landscaping shall be reviewed for approval during Site Plan Review (SPR), which will be required as a Condition of Approval. Conditions of the SPR may include design of parking and circulation areas, access, on-site grading and drainage, fire protection, landscaping, signage and lighting.

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a "Potentially Significant Impact" as indicated by the checklist on the following pages.

\square Aesthetics	\square Agriculture and Forestry Resources
\square Air Quality	\square Biological Resources
\square Cultural Resources	\square Geology/Soils
\square Hazards and Hazardous Materials	\square Hydrology/Water Quality
\square Land Use/Planning	\square Mineral Resources
\square Noise	\square Population/Housing
\square Public Services	\square Recreation
\square Transportation/Traffic	\square Utilities/Service Systems
\square Mandatory Findings of Significance	\square Greenhouse Gas Emissions

DETERMINATION OF REQUIRED ENVIRONMENTAL DOCUMENT:

On the basis of this initial evaluation:

I find that the proposed project COULD NOT have a significant effect on the environment. A NEGATIVE DECLARATION WILL BE PREPARED.

I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because the Mitigation Measures described on the attached sheet have been added to the project. A MITIGATED NEGATIVE DECLARATION WILL BE PREPARED.

I find the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required

I find that as a result of the proposed project, no new effects could occur, or new Mitigation Measures would be required that have not been addressed within the scope of a previous Environmental Impact Report.

PERFORMED BY:

REVIEWED BY:

DC:
G:14360Devs\&PInIPROJSECIPROJDOCSICUP13500-359913597US-CEQAICUP3597 MV1287 IS Checklist.docx

INITIAL STUDY ENVIRONMENTAL CHECKLIST FORM (Initial Study Application No. 7410, Classified Conditional Use Permit Application No. 3597 and Minor Variance Application No. 1287)

The following checklist is used to determine if the proposed project could potentially have a significant effect on the environment. Explanations and information regarding each question follow the checklist.
1 = No Impact
2 = Less Than Significant Impact
3 = Less Than Significant Impact with Mitigation Incorporated
4 = Potentially Significant Impact
I. AESTHETICS

Would the project:
3 a) Have a substantial adverse effect on a scenic vista?
3 b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?
c) Substantially degrade the existing visual character or quality of the site and its surroundings?
3
d) Create a new source of substantial light or glare that would adversely affect day or nighttime views in the area?
II. AGRICULTURAL AND FORESTRY RESOURCES

Would the project:
a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance, as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?
b) Conflict with existing zoning for agricultural use, or a Williamson Act Contract?
c) Conflict with existing zoning for forest land, timberland or timberland zoned Timberland Production?
$\underline{2}$
d) Result in the loss of forest land or conversion of forest land to non-forest use?
$\underline{2}$
e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland to non-agricultural use or conversion of forest land to non-forest use?

III. AIR QUALITY

Would the project:
a) Conflict with or obstruct implementation of the applicable Air Quality Plan?
b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?
c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under applicable Federal or State ambient air quality standards (including releasing emissions which exceed quantitative thresholds for ozone precursors)?

3
d) Expose sensitive receptors to substantial pollutant concentrations?

3 e) Create objectionable odors affecting a substantial number of people?

IV. BIOLOGICAL RESOURCES

Would the project:
2 a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?
b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?
c) Have a substantial adverse effect on federally-protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?
d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?
2 e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?
f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state Habitat Conservation Plan?

V. CULTURAL RESOURCES

Would the project:
3 a) Cause a substantial adverse change in the significance of a historical resource as defined in Public Resources Code Section 15064.5?

3 b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to Public Resources Code Section 15064.5?
3 c) Directly or indirectly destroy a unique paleontological resource or site, or unique geologic feature?
3 d) Disturb any human remains, including those interred outside of formal cemeteries?

3 e) Cause a substantial adverse change in the significance of a tribal cultural resource as defined in Public Resources Code Section 21074?
VI. GEOLOGY AND SOILS

Would the project:
a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:
1 i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault?
$1 \quad$ ii) Strong seismic ground shaking?
1 iii) Seismic-related ground failure, including liquefaction?
iv) Landslides?
b) Result in substantial soil erosion or loss of topsoil?
c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?
d) Be located on expansive soil as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?
e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?

VII. GREENHOUSE GAS EMISSIONS

Would the project:
$\underline{2}$ a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?
b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

VIII. HAZARDS AND HAZARDOUS MATERIALS

Would the project:
a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?
b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?
c) Create hazardous emissions or utilize hazardous or acutely hazardous materials, substances, or waste within onequarter mile of an existing or proposed school?
d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?
e) If located within an Airport Land Use Plan or where such a Plan has not been adopted, within two miles of a public airport or public use airport, result in a safety hazard for people residing or working in the project area?
f) If within the vicinity of a private airstrip, result in a safety hazard for people residing or working in the project area?
g) Impair implementation of or physically interfere with an adopted Emergency Response Plan or Emergency Evacuation Plan?
h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?
IX. HYDROLOGY AND WATER QUALITY

Would the project:
$\underline{2}$ a) Violate any water quality standards of waste discharge requirements?
2 b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?
c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on or off site?
d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on or off site?

2 e) Create or contribute runoff water which would exceed the capacity of existing or planned storm water drainage systems or provide substantial additional sources of polluted runoff?
$\underline{2}$
f) Otherwise substantially degrade water quality?
g) Place housing within a 100-year flood hazard area as mapped on a Federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?
2
h) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?

2 i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?
j) Cause inundation by seiche, tsunami, or mudflow?
X. LAND USE AND PLANNING

Would the project:
a) Physically divide an established community?

2 b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to, the General Plan, Specific Plan, local coastal program, or Zoning Ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?
1 c) Conflict with any applicable Habitat Conservation Plan or Natural Community Conservation Plan?

XI. MINERAL RESOURCES

Would the project:
2 a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?
2 b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local General Plan, Specific Plan or other land use plan?

XII. NOISE

Would the project:
2 a) Expose persons to or generate noise levels in excess of standards established in the local General Plan or Noise Ordinance, or applicable standards of other agencies?
2 b) Expose persons to or generate excessive ground-borne vibration or ground-borne noise levels?
c) Create a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?
2 d) Create a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?
e) Expose people residing or working in the project area to excessive noise levels, for a project located within an Airport Land Use Plan or, where such a Plan has not been adopted, within two miles of a public airport or public use airport?
f) Expose people residing or working in the project area to excessive noise levels, for a project within the vicinity of a private airstrip?

XIII. POPULATION AND HOUSING

Would the project:
a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?
b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?
c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?

XIV. PUBLIC SERVICES

Would the project:
a) Result in substantial adverse physical impacts associated with the provision of new or physically-altered governmental facilities, need for new or physically-altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:
$\underline{2} \quad$ i) Fire protection?
1
ii) Police protection?
iii) Schools?
iv) Parks?
v) Other public facilities?
XV. RECREATION

Would the project:
a) Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?
b) Include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?
XVI. TRANSPORTATION / TRAFFIC

Would the project:
a) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation, including mass transit and non-motorized travel and relevant components of the circulation system, including, but not limited to, intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?
b) Conflict with an applicable Congestion Management Program, including, but not limited to, level of service standards and travel demand measures, or other standards established by the County congestion management agency for designated roads or highways?
c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location, which results in substantial safety risks?
d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?
e) Result in inadequate emergency access?
f) Conflict with adopted policies, plans or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?

XVII. UTILITIES AND SERVICE SYSTEMS

Would the project:
2 a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?
2 b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?
c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?
d) Have sufficient water supplies available to service the project from existing entitlements and resources, or are new or expanded entitlements needed?
e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?
f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?
g) Comply with federal, state, and local statutes and regulations related to solid waste?

XVIII. MANDATORY FINDINGS OF SIGNIFICANCE

Would the project:
a) Have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below selfsustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?
b) Have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.)
c) Have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

Documents Referenced:

This Initial Study is referenced by the documents listed below. These documents are available for public review at the County of Fresno, Department of Public Works and Planning, Development Services Division, 2220 Tulare Street, Suite A, Fresno, California (corner of M \& Tulare Streets).

Fresno County General Plan, Policy Document and Final EIR
Fresno County Zoning Ordinance
Fresno County-adopted Kings River Regional Plan
Important Farmland Map 2014, State Department of Conservation Cultural Resource Assessment prepared by Peak \& Associates, Inc. Transportation Impact Study prepared by Precision Civil Engineering, Inc.
DC:
G:14360Devs\&PIn\PROJSEC\PROJDOCSICUP\3500-3599\3597\IS-CEQA\CUP3597 MV1287 IS Checklist.docx

County of Fresno

EVALUATION OF ENVIRONMENTAL IMPACTS

APPLICANT:	Kings River Packing
APPLICATION NOS.:	Initial Study Application No. 7410, Classified Conditional Use Permit Application No. 3597 and Minor Variance Application No. 1287
DESCRIPTION:	Amend Classified Conditional Use Permit (CUP) No. 3476 in order to allow expansion of an existing fruit packing and storage facility in the AE-20 (Exclusive Agricultural, 20-acre minimum parcel size) and AL-40 (Limited Agricultural, 40- acre minimum parcel size) Zone Districts, including authorization of a 39-foot building height (35-foot maximum building height allowed) for a proposed building addition to be partially located in the AL-40 (Limited Agricultural, 40- acre minimum parcel size) and AE-20 (Exclusive
	Agricultural, 20-acre minimum parcel size) Zone Districts, and a 38-foot building height (35-foot maximum building height allowed) for a proposed building addition to be located in the AE-20 (Exclusive Agricultural, 20-acre minimum parcel
size) Zone District.	
	The project site is located on the east side of Trimmer Springs Road, approximately three miles north of its intersection with Belmont Avenue, approximately three miles
Southwest of the unincorporated community of Piedra	
(21095 E. Trimmer Springs Road) (SUP. DIST. 5) (APNs	

I. AESTHETICS

A. Would the project have a substantial adverse effect on a scenic vista; or
B. Would the project substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a State scenic highway; or
C. Would the project substantially degrade the existing visual character or quality of the site and its surroundings?

FINDING: LESS THAN SIGNIFICANT IMPACT WITH MITIGATION INCORPORATED:

DEVELOPMENT SERVICES AND CAPITAL PROJECTS DIVISION
2220 Tulare Street, Sixth Floor / Fresno, California 93721 / Phone (559) 600-4497 / 600-4022 / 600-4540 / FAX 600-4200
The County of Fresno is an Equal Employment Opportunity Employer

This proposal entails the phased expansion of an existing 10.89-acre commercial fruit packing operation by an additional 5.75 acres of processing, storage, and office space in the AL-40 (Limited Agricultural, 40-acre minimum parcel size) and AE-20 (Exclusive Agricultural, 20-acre minimum parcel size) Zone Districts. Phase I of this expansion proposal includes construction of a loading dock and a 77,500 square-foot addition to an existing metal building to be utilized for fruit cold storage and office space. Phase II of this expansion proposal includes construction of a 173,000 square-foot addition to an existing metal building to be utilized for fruit packing and office space. The proposed 77,500 square-foot addition will have an overall building height of approximately 39 feet, and the proposed 173,000 square-foot addition will have an overall building height of approximately 38 feet, whereas the AL-40 (Limited Agricultural, 40-acre minimum parcel size) and AE-20 (Exclusive Agricultural, 20-acre minimum parcel size) Zone Districts permit a 35-foot maximum building height. As such, Minor Variance Application No. 1287 is being concurrently processed with Classified Conditional Use Permit Application No. 3597 so as to allow the proposed 39-foot and 38-foot building heights.

The existing commercial fruit packing operation was originally authorized by Classified Conditional Use Permit (CUP) No. 2786, and was subsequently expanded by CUP No. 3307 and CUP No. 3476. Currently, the existing commercial fruit packing operation is located on an approximately 28.83-acre parcel identified as Assessor's Parcel Numbers (APNs) 158-070-65, 158-070-69, 158-070-76 and 158-070-77, which is partially located in the AL-40 (Limited Agricultural, 40-acre minimum parcel size) and AE-20 (Exclusive Agricultural, 20-acre minimum parcel size) Zone Districts.

The subject parcel is located in an agricultural area comprised primarily of orchards with few residential land uses dispersed throughout. Additionally, portions of the Kings River and the Fresno Irrigation District Gould Canal are easterly adjacent to the subject parcel, and the Friant-Kern Canal is located approximately one and a half-mile south of the subject parcel.

A portion of Trimmer Springs Road, which is identified as a Scenic Drive in the Fresno County General Plan, abuts a western property line of the subject parcel. Policy OS-L. 3 of the General Plan typically requires intensive land use proposals such as commercial developments to be developed with a 200-foot natural open space area adjacent to the Scenic Drive. General Plan Policy OS-L. 3 also allows this 200-foot natural space setback requirement to be modified for proposals which involve the expansion of an existing facility. In this case, the existing commercial fruit packing operation currently encroaches into the typically required 200-foot natural open space area. The proposed improvements would be setback farther from Trimmer Springs Road than the existing commercial fruit packing operation; however, the proposed improvements would be located within the typically required 200 -foot natural open space area. As such, drought-tolerant landscaping shall be provided along the western property line of the subject parcel where said property line abuts Trimmer Springs Road. Further, said landscaping shall be maintained in healthful condition and shall consist of trees and shrubs of reasonable size and density to provide visual screening. This landscaping requirement will be included as a Mitigation Measure to reduce the proposal's aesthetic impacts on Trimmer Springs Road to a less than significant level. Additionally, the design of the required landscaping shall be reviewed for approval during Site Plan

$$
\text { Evaluation of Environmental Impacts - Page } 2
$$

Review (SPR), which will be required as a Condition of Approval. Conditions of the SPR may include design of parking and circulation areas, access, on-site grading and drainage, fire protection, landscaping, signage and lighting.

* Mitigation Measure

1. In order to mitigate potential impacts to the scenic corridor along Trimmer Springs Road as a result of the proposed project, the Applicant shall screen the facility utilizing drought-tolerant landscaping, consisting of trees and shrubs of adequate size and density, along the western property line of the subject parcel where said property line abuts Trimmer Springs Road. Said landscaping shall be maintained in a healthy condition for the life of project operations. If the amount of landscaping provided to satisfy this requirement is equal to or greater than 500 square feet, the Applicant shall comply with California Code of Regulations Title 23, Division 2, Chapter 2.7 Model Water Efficient Landscape Ordinance (MWELO). Proposed landscaping and irrigation plans shall be submitted in conjunction with the required Site Plan Review Application and all landscaping shall be installed prior to occupancy.
D. Would the project create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

FINDING: LESS THAN SIGNIFICANT IMPACT WITH MITIGATION INCORPORATED:

This proposal will utilize outdoor lighting which has the potential of generating new sources of light and glare in the area. As such, all outdoor lighting fixtures shall be required to be hooded and directed so as to not shine towards adjacent properties and roads. This requirement will be included as a Mitigation Measure.

* Mitigation Measure

1. Prior to occupancy, all outdoor lighting shall be hooded, directed and permanently maintained as to not shine towards adjacent properties and roads.

II. AGRICULTURAL AND FORESTRY RESOURCES

A. Would the project convert prime or unique farmlands or farmland of state-wide importance to non-agricultural use; or
B. Would the project conflict with existing agricultural zoning or Williamson Act Contracts; or
C. Would the project conflict with existing zoning for or cause rezoning of forest land, timberland, or timberland zoned Timberland Production; or
D. Would the project result in the loss of forest land or conversion of forest land to nonforest use; or
E. Would the project involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland to non-agricultural uses or conversion of forest land to non-forest use?

FINDING: LESS THAN SIGNIFICANT IMPACT:

The subject parcel is not located on forest land, and portions of the subject parcel are classified as Semi-Agricultural and Rural Commercial, and Prime Farmland on the Fresno County Important Farmland Map (2014).

Portions of the subject parcel are enrolled under Agricultural Land Conservation Contract (Williamson Act Contract) No. 225; however, partial Non-Renewals of Contract No. 225 have been filed for the contracted portions of the subject parcel and will be removed from the Williamson Act by the last day of December 2022.

With regard to the portions of the subject parcel classified as Prime Farmland, this proposal will preclude the agricultural cultivation of approximately 3.97 acres of Prime Farmland. However, this loss of farmland is less than significant in that the proposed improvements will serve an existing commercial enterprise which processes and stores agricultural products.

III. AIR QUALITY

A. Would the project conflict with or obstruct implementation of the applicable Air Quality Plan; or
B. Would the project isolate any air quality standard or contribute to an existing or projected air quality violation; or
C. Would the project result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under a Federal or State ambient air quality standard; or
D. Would the project expose sensitive receptors to substantial pollutant concentrations; or
E. Would the project create objectionable odors affecting a substantial number of people?

FINDING: LESS THAN SIGNIFICANT IMPACT WITH MITIGATION INCORPORATED:

According to the San Joaquin Valley Unified Air Pollution Control District (Air District), this proposal is subject to Air District Rule 9510 (Indirect Source Review) as it meets the applicability threshold within Air District Rule 9510 (Indirect Source Review) of 25,000 square feet of light industrial space. Additionally, for proposals subject to Air District Rule 9510 (Indirect Source Review), the Air District requires submittal of an Air Impact Assessment (AIA) Application no later than applying for final discretionary approval. Further, this proposal may also be subject to the following Air District Rules: Regulation VIII (Fugitive PM10 Prohibitions), Rule 4102 (Nuisance), Rule 4601 (Architectural Coatings), and Rule 4641 (Cutback, Slow Cure, and Emulsified Asphalt).

An Air Impact Assessment (AIA) Application (ISR Project No. C-20180007) was prepared for this proposal and submitted to the Air District on January 8, 2018. The AIA Application was approved by the Air District on February 15, 2018. According to the Air District, emissions of criteria pollutants specific to the proposal are expected to be mitigated below the Air District significance thresholds of 10 tons/year NOX and 15 tons/year PM10. As such, the emissions of criteria pollutants specific to the proposal would have no significant adverse impact on air quality. In order to ensure that emissions of criteria pollutants specific to the proposal are maintained below Air District significance thresholds, the commercial fruit packing operation shall adhere to the Mitigation Measures identified in the AIA Application approval.

* Mitigation Measure

1. The Applicant shall comply with all the measures identified in the Project Air Impact Assessment (AIA)/Indirect Source Review (Project Number C-2018007) dated February 15, 2018 as approved for this project by the San Joaquin Valley Air Pollution Control District (SJVAPCD). The Applicant shall submit evidence annually to the SJVAPCD and Department of Public Works and Planning demonstrating compliance with the mitigation measures.

Compliance with Air District Rules and Regulations will reduce air quality impacts from the subject proposal to a less than significant level.

IV. BIOLOGICAL RESOURCES

A. Would the project have a substantial adverse effect, either directly or through habitat modifications, on any candidate, sensitive, or special-status species; or
B. Would the project have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Wildlife (CDFW) or U.S. Fish and Wildlife Service (USFWS); or
C. Would the project have a substantial adverse effect on federally-protected wetlands as defined by Section 404 of the Clean Water Act through direct removal, filling, hydrological interruption or other means; or
D. Would the project interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites; or
E. Would the project conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance; or
F. Would the project Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local regional, or state habitat conservation plan?

FINDING: LESS THAN SIGNIFICANT IMPACT:
The subject parcel is located in an agricultural area and has been previously disturbed as said property has been historically utilized for a commercial fruit packing facility and agricultural cultivation. Further, neighboring properties have been historically utilized for agricultural cultivation and, therefore, have also been previously disturbed.

This proposal was referred to the California Department of Fish and Wildlife (CDFW), which did not identify any concerns related to the project. This proposal was also referred to the U.S. Fish and Wildlife Service (USFWS), which also did not identify any concerns related to the project. Therefore, no impacts were identified in regard to: 1.) Any candidate, sensitive, or special-status species; 2.) Any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the CDFW or USFWS; 3.) Federally protected wetlands as defined by Section 404 of the Clean Water Act; or 4.) The movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites. This proposal will not conflict with any local policies or ordinances protecting biological resources or any provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state Habitat Conservation Plan.

V. CULTURAL RESOURCES

A. Would the project cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5; or
B. Would the project cause of substantial adverse change in the significance of an archeological resource pursuant to Section 15064.5; or
C. Would the project directly or indirectly destroy a unique paleontological resource or site or unique geologic feature; or
D. Would the project disturb any human remains, including those interred outside of formal cemeteries; or
E. Would the project cause a substantial adverse change in the significance of a tribal cultural resource as defined in Public Resources Code Section 21074?

FINDING: LESS THAN SIGNIFICANT IMPACT WITH MITIGATION INCORPORATED:
The subject parcel is located in an area designated to be highly sensitive for archeological resources; however, said property has been historically utilized for a commercial fruit packing facility and agricultural cultivation and, therefore, has been previously disturbed. Further, Peak \& Associates, Inc. prepared a Cultural Resource Assessment for the project site, which identified no archaeological or cultural resources. However, in the event that cultural resources are unearthed during ground disturbing activity, all work shall be halted in the area of the find, and an Archeologist shall be

$$
\text { Evaluation of Environmental Impacts - Page } 6
$$

contacted to evaluate the findings and make any necessary mitigation
recommendations. If human remains are unearthed during ground disturbing activities, no further disturbance is to occur until the Fresno County Sheriff-Coroner has made the necessary findings as to origin and disposition. All normal evidence procedures shall be followed by photographs, reports and video. If such remains are determined to be Native American, the Sheriff-Coroner must notify the Native American Commission within 24 hours. This requirement will be included as a Mitigation Measure to reduce the proposal's cultural resource impacts to a less than significant level.

* Mitigation Measure

1. In the event that cultural resources are unearthed during ground disturbing activities, all work shall be halted in the area of the find. An Archeologist shall be called to evaluate the findings and make any necessary mitigation recommendations. If human remains are unearthed during ground disturbing activities, no further disturbance is to occur until the Fresno County SheriffCoroner has made the necessary findings as to origin and disposition. All normal evidence procedures shall be followed by photographs, reports and video. If such remains are determined to be Native American, the Sheriff-Coroner must notify the Native American Commission within 24 hours.

VI. GEOLOGY AND SOILS

A. Would the project expose people or structures to potential substantial adverse effects, including risk of loss, injury or death involving:

1. Rupture of a known earthquake; or
2. Strong seismic ground shaking; or
3. Seismic-related ground failure, including liquefaction; or
4. Landslides?

FINDING: NO IMPACT:
The area where the subject parcel is located is designated as Seismic Design Category C in the California Geological Survey. No agency expressed concerns related to ground shaking, ground failure, liquefaction or landslides. Development of the project will be subject to the Seismic Design Category C Standards.
B. Would the project result in substantial erosion or loss of topsoil?

FINDING: LESS THAN SIGNIFICANT IMPACT:
Changes in topography and erosion could result from grading activities associated with this proposal. According to the Development Engineering Section of the Fresno County Department of Public Works and Planning, the Applicant must obtain a Grading Permit
or Grading Voucher for any grading associated with this proposal. This mandatory requirement will be included as a Project Note.
C. Would the project result in on-site or off-site landslide, lateral spreading, subsidence, liquefaction or collapse; or
D. Would the project be located on expansive soils, creating substantial risks to life or property?

FINDING: NO IMPACT:
The project site is not located within an area of known risk of landslides, lateral spreading, subsidence, liquefaction, collapse, or within an area of known expansive soils.
E. Would the project have soils incapable of adequately supporting the use of septic tanks or alternative disposal systems where sewers are not available for wastewater disposal?

FINDING: LESS THAN SIGNIFICANT IMPACT:
The existing commercial fruit packing operation is served by three engineered on-site septic systems, and no additional septic systems are being requested through the proposed expansion project.

According to the Environmental Health Division of the Fresno County Department of Public Health, California Plumbing Code Appendix H requires access to septic tanks to be maintained. Additionally, per California Plumbing Code Section 6.9, disposal fields, trenches, and leaching beds shall not be paved over or covered by concrete or a material that is capable of reducing or inhibiting evaporation of sewer effluent. These mandatory requirements will be included as Project Notes.

VII. GREENHOUSE GAS EMISSIONS

A. Would the project generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment; or
B. Would the project conflict with any applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

FINDING: LESS THAN SIGNIFICANT IMPACT:
The San Joaquin Valley Unified Air Pollution Control District (Air District) has reviewed this proposal and expressed no concerns related to greenhouse gas emissions.
Further, compliance with Air District Rules and Regulations discussed in Section III (Air Quality) of this analysis will reduce air quality impacts from the subject proposal to a less than significant level.

VIII. HAZARDS AND HAZARDOUS MATERIALS

A. Would the project create a significant public hazard through routine transport, use or disposal of hazardous materials; or
B. Would the project create a significant public hazard involving accidental release of hazardous materials into the environment?

FINDING: LESS THAN SIGNIFICANT IMPACT:

According to the Environmental Health Division of the Fresno County Department of Public Health, the commercial fruit packing operation shall satisfy the requirements set forth in the California Health and Safety Code (HSC), Division 20, Chapter 6.95. As such, within 30 days of the occurrence of any of the following events, the commercial fruit packing operation must update their Hazardous Materials Business Plan (HMBP) and Site Map on file with the Fresno County Department of Public Health: 1) There is a 100% or more increase in the quantities of a previously disclosed material; or 2) The facility begins handling a previously undisclosed material at or above the HMBP threshold amounts. The commercial fruit packing operation must also certify that a review of the HMBP has been conducted at least once every year and that any necessary changes were made and that the changes were submitted to the Fresno County Department of Public Health. These mandatory requirements will be included as Project Notes.

Additionally, all hazardous waste shall be handled in accordance with requirements set forth in the California Code of Regulations (CCR), Title 22, Division 4.5, which discusses proper labeling, storage and handling of hazardous wastes. This mandatory requirement will be included as a Project Note.

Further, within six months of the occurrence of any of the following events, the commercial fruit packing operation must update their Risk Management Plan (RMP) on file with the U.S. Environmental Protection Agency (EPA): 1) If a change alters the Program Level that applies to any covered process; or 2) If a change requires a revised Off-Site Consequence Analysis; or 3) If a change requires a revised Process Hazard Analysis or Hazard Review; or 4) If a new regulated substance is present above the threshold quantity in an already covered process; or 5) If a regulated substance is present above the threshold quantity in a new process; or 6) If the U.S. EPA begins regulating a new substance. This mandatory requirement will be included as a Project Note.
C. Would the project create hazardous emissions or utilize hazardous materials, substances or waste within one quarter-mile of a school?

FINDING: NO IMPACT:
There are no schools located within one quarter-mile of the subject parcel.
D. Would the project be located on a hazardous materials site?

$$
\text { Evaluation of Environmental Impacts - Page } 9
$$

FINDING: NO IMPACT:
No hazardous materials sites are located within the boundaries of the project site.
E. Would a project located within an airport land use plan or, absent such a plan, within two miles of a public airport or public use airport, result in a safety hazard for people residing or working in the project area; or
F. Would a project located within the vicinity of a private airstrip result in a safety hazard for people residing or working in the project area?

FINDING: LESS THAN SIGNIFICANT IMPACT:

The project site is located approximately one mile northeast of a private airstrip identified as "Harris River Ranch Airport"; however, the project site is not located within any Safety Zone of the private airstrip. Further, the private airstrip is oriented in an east to west direction.
G. Would the project impair implementation of or physically interfere with an adopted Emergency Response Plan or Emergency Evacuation Plan?

FINDING: NO IMPACT:

This proposal will not impair the implementation of, or physically interfere with an adopted Emergency Response Plan. No such impacts were identified in the project analysis.
H. Would the project expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?

FINDING: NO IMPACT:

The project site is not located within a wildland area.

IX. HYDROLOGY AND WATER QUALITY

A. Would the project violate any water quality standards or waste discharge requirements or otherwise degrade water quality?

FINDING: LESS THAN SIGNIFICANT IMPACT:

As construction associated with this proposal will disturb more than one acre, compliance with the National Pollutant Discharge Elimination System (NPDES) General Permit No. CAS000002 for Discharges of Storm Water Associated with Construction Activity shall be required. Before construction begins, the Applicant shall submit to the State Water Resources Control Board a Notice of Intent to comply with said permit, a

Storm Water Pollution Prevention Plan (SWPPP), a Site Plan, and appropriate fees. The SWPPP shall contain all items listed in Section A of the General Permit, including descriptions of measures taken to prevent or eliminate unauthorized non-storm water discharges, and best management practices (BMP) implemented to prevent pollutants from discharging with storm water into waters of the United States. These mandatory requirements will be included as Project Notes.

According to the California Regional Water Quality Control Board (Water Board), the Applicant submitted a Report of Waste Discharge (RWD) to the Water Board in 1997 for the discharge of 4,500 gallons of fruit-washing wastewater per day (monthly average) to approximately 65 acres of land. If the proposed expansion project will result in a material change in the volume, character, or location of the discharge that was described in the 1997 RWD, the Applicant shall be required to submit a new RWD to the Water Board at least 140 days prior to initiating discharge from the expanded facility. This mandatory requirement will be included as a Project Note.
B. Would the project substantially deplete groundwater supplies or interfere substantially with groundwater recharge so that there would be a net deficit in aquifer volume or a lowering of the local groundwater table?

FINDING: LESS THAN SIGNIFICANT IMPACT:
The subject parcel is located in a designated water-short area. However, according to the Water and Natural Resources Division of the Fresno County Department of Public Works and Planning, there will not be a significant increase in water usage resulting from the proposed expansion project as water generated from the fruit washing process is recycled as a supplement for the irrigation water utilized by surrounding orchards, thereby replacing ground water that would otherwise be pumped for irrigation purposes.
C. Would the project substantially alter existing drainage patterns, including alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on or off site; or
D. Would the project substantially alter existing drainage patterns, including alteration of the course of a stream or river, in a manner which would result in flooding on or off site?

FINDING: NO IMPACT:
Portions of the Kings River are easterly adjacent to the subject parcel; however, no streams or rivers are located within the boundaries of the subject parcel.
E. Would the project create or contribute run-off which would exceed the capacity of existing or planned storm water drainage systems or provide substantial additional sources of polluted run-off?

FINDING: LESS THAN SIGNIFICANT IMPACT:

Permanent improvements associated with this proposal will not cause significant changes in absorption rates, drainage patterns or the rate and amount of surface runoff, with adherence to the Grading and Drainage Sections of the Fresno County Ordinance Code. Further, any additional runoff generated by development of the proposal cannot be drained across property lines and must be retained on site per County Standards. This mandatory requirement will be included as a Project Note.
F. Would the project otherwise substantially degrade water quality?

FINDING: LESS THAN SIGNIFICANT IMPACT:
According to the Fresno Irrigation District (FID), an FID canal identified as Gould Canal No. 97 traverses an eastern edge of the subject parcel, and FID access along said portion of the canal may be obstructed by existing encroachments such as trees and fencing. As such, with regard to that portion of the canal traversing an eastern edge of the subject parcel, FID requests that any obstructions located within 20 feet of the canal be removed. Additionally, FID also requests that FID review and approval be required for any aspect of the proposed expansion project that will impact FID facilities. Further, FID also requests that the Applicant be required to submit a Grading and Drainage Plan to FID for review and approval in order to prove that the proposed expansion project will not adversely impact the structural integrity of Gould Canal No. 97, or result in drainage patterns that would adversely impact FID.

With regard to the agency comments provided by FID, County staff acknowledges that the requirement for the Applicant to provide a Grading and Drainage Plan to FID for review and approval prior to the issuance of Building Permits will help ensure that the project will not adversely impact FID facilities. This requirement will be included as a Condition of Approval, as was the case with previously-approved Classified Conditional Use Permit (CUP) No. 3476. Additionally, the inclusion of a Condition of Approval requiring the Applicant to provide a Grading and Drainage Plan to FID for review and approval negates the need for FID to review other aspects of the project. Further, regarding removal of possible obstructions to FID access along Gould Canal No. 97, County staff does not believe there is a nexus for such a requirement considering the 180-foot separation between Gould Canal No. 97 and the nearest proposed structural improvement.
G. Would the project place housing within a 100-year floodplain?

FINDING: NO IMPACT:
No housing is proposed with this project.
H. Would the project place structures within a 100-year flood hazard area that would impede or redirect flood flows?

FINDING: LESS THAN SIGNIFICANT IMPACT:

According to FEMA FIRM Panel 1645H, portions of the subject parcel are located in Flood Zone AE, which is subject to flooding from the 1% chance storm (100-year storm). Any work performed within Flood Zones shall conform to provisions established in Chapter 15.48 Flood Hazard Areas of Fresno County Ordinance. This mandatory requirement will be included as a Project Note.
I. Would the project expose persons or structures to levee or dam failure?

FINDING: LESS THAN SIGNIFICANT IMPACT:

Pineflat Reservoir is located approximately six and a half-mile northeast of the subject parcel; however, no impacts related to levee or dam failure were identified in the project analysis.
J. Would the project cause inundation by seiche, tsunami or mudflow?

FINDING: NO IMPACT:
The subject parcel is not prone to seiche, tsunami or mudflow. No such impacts were identified in the project analysis.

X. LAND USE AND PLANNING

A. Will the project physically divide an established community?

FINDING: NO IMPACT:
This proposal will not physically divide a community. The subject parcel is located approximately three miles southwest of the unincorporated community of Piedra.
B. Will the project conflict with any Land Use Plan, policy or regulation of an agency with jurisdiction over the project?

FINDING: LESS THAN SIGNIFICANT IMPACT:
The subject parcel is designated Agriculture in the County-adopted Kings River Regional Plan. Provisions for value-added agricultural uses, such as the proposed commercial fruit packing operation expansion, have been provided for in areas designated Agriculture by the Fresno County Zoning Ordinance and General Plan.

Policy LU-A. 3 of the General Plan provides that value-added agricultural uses may be allowed by discretionary permit on lands designated Agriculture, subject to a number of specific criteria. Criteria LU-A.3.a states that the use shall provide a needed service to the surrounding agricultural area which cannot be provided more efficiently within urban areas or which requires location in a non-urban area because of unusual site requirements or operational characteristics. Criteria LU-A.3.b states that the use should not be sited on productive agricultural land if less productive land is available in the vicinity. Criteria LU-A.3.c states that the use shall not have a detrimental impact on
water resources or the use or management of surrounding properties within a one quarter-mile radius. Criteria LU-A.3.d states that a probable workforce should be located nearby or readily available. Criteria LU-A.3.f states that the evaluation under Criteria LU-A.3.a for proposed value-added agricultural processing facilities shall consider the service requirements of the use and the capability and capacity of cities and unincorporated communities to provide the required services. Criteria LU-A.3.h states that the evaluation of discretionary permits for existing commercial uses shall not consider Criteria LU-A.3.b.

With regard to Criteria "a" and Criteria " f ", this proposal entails the expansion of an existing 10.89-acre commercial fruit packing operation by an additional 5.75 acres of processing, storage, and office space. The subject parcel is located in an agricultural area comprised primarily of orchards with few residential land uses dispersed throughout. The existing commercial fruit packing operation is served by on-site engineered septic systems and an on-site water well, and no additional septic systems or water wells are being requested through the proposed expansion project. Further, as this proposal is an expansion of an existing commercial use, Criteria "b" does not apply per Criteria "h".

With regard to Criteria "c", the subject parcel is located in a designated water-short area. However, according to the Water and Natural Resources Division of the Fresno County Department of Public Works and Planning, there will not be a significant increase in water usage resulting from the proposed expansion project as water generated from the fruit washing process is recycled as a supplement for the irrigation water utilized by surrounding orchards, thereby replacing ground water that would otherwise be pumped for irrigation purposes. Further, with adherence to the Conditions of Approval, Mitigation Measures and Project Notes identified in this Initial Study (IS), staff believes the proposal will not have a detrimental impact on the use or management of surrounding properties.

With regard to Criteria "d", this proposal is located approximately three miles southwest of the unincorporated community of Piedra, and is also located approximately ten miles east of the City of Clovis, which have the ability to provide an adequate workforce.

According to Policy LU-A. 13 of the General Plan, the County shall protect agricultural operations from conflicts with non-agricultural uses by requiring buffers between proposed non-agricultural uses and adjacent agricultural operations.

According to Policy LU-A. 14 of the General Plan, the County shall ensure that the review of discretionary permits includes an assessment of the conversion of productive agricultural land and that mitigation be required where appropriate.

With regard to Policy LU-A. 13 and Policy LU-A.14, this proposal entails the expansion of an existing commercial fruit packing operation located in an agricultural area comprised primarily of orchards with few residential land uses dispersed throughout. Portions of the subject parcel are classified as Semi-Agricultural and Rural Commercial, and Prime Farmland on the Fresno County Important Farmland Map (2014). With regard to the portions of the subject parcel classified as Prime Farmland, this proposal

$$
\text { Evaluation of Environmental Impacts - Page } 14
$$

will preclude the agricultural cultivation of approximately 3.97 acres of Prime Farmland. However, this loss of farmland is less than significant in that the proposed improvements will serve an existing commercial enterprise which processes and stores agricultural products.

According to Policy PF-C. 17 of the General Plan, the County shall undertake a water supply evaluation prior to consideration of any discretionary project related to land use. The evaluation shall include the following:
a. Determination that the water supply is adequate to meet the highest demand that could be permitted on the lands in question;
b. Determination of the impact that use of the proposed water supply will have on other water users in Fresno County;
c. Determination that the proposed water supply is sustainable or that there is an acceptable plan to achieve sustainability.

With regard to Policy PF-C.17, the subject parcel is located in a designated water-short area. However, according to the Water and Natural Resources Division of the Fresno County Department of Public Works and Planning, there will not be a significant increase in water usage resulting from the proposed expansion project as water generated from the fruit washing process is recycled as a supplement for the irrigation water utilized by surrounding orchards, thereby replacing ground water that would otherwise be pumped for irrigation purposes.
C. Will the project conflict with any applicable Habitat Conservation Plan or Natural Community Conservation Plan?

FINDING: NO IMPACT:

This proposal will not conflict with any Habitat Conservation Plan or Natural Community Conservation Plan. No such Plans were identified in the project analysis.

XI. MINERAL RESOURCES

A. Would the project result in the loss of availability of a known mineral resource; or
B. Would the project result in the loss of availability of a locally-important mineral resource recovery site designated on a General Plan?

FINDING: LESS THAN SIGNIFICANT IMPACT:
The project site is located in Mineral Resource Zone 2 (MRZ-2) per General Plan Policy OS-C.2. Typically, the County shall not permit land uses incompatible with mineral resource recovery within areas designated as MRZ-2; however, this proposal entails expansion of an existing facility, and no mineral resource impacts were identified in the project analysis.

XII. NOISE

A. Would the project result in exposure of people to severe noise levels; or
B. Would the project result in exposure of people to or generate excessive ground-borne vibration or ground-borne noise levels; or
C. Would the project cause a substantial permanent increase in ambient noise levels in the project vicinity; or
D. Would the project result in a substantial temporary or periodic increase in ambient noise levels?

FINDING: LESS THAN SIGNIFICANT IMPACT:

The Environmental Health Division of the Fresno County Department of Public Health reviewed this proposal and did not identify any potential noise-related impacts. However, development of the proposal must comply with the Fresno County Noise Ordinance related to construction noise, limiting noise-generating construction activities to the hours of 7:00 a.m. to 6:00 p.m. Monday through Friday and 7:00 a.m. to 5:00 p.m. Saturday and Sunday, thereby minimizing noise impacts to less than significant. This mandatory requirement will be included as a Project Note.
E. Would the project expose people to excessive noise levels associated with a location near an airport or a private airstrip; or
F. For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

FINDING: LESS THAN SIGNIFICANT IMPACT:
The project site is located approximately one mile northeast of a private airstrip identified as "Harris River Ranch Airport"; however, no adverse noise impacts were identified in the project analysis.

XIII. POPULATION AND HOUSING

A. Would the project induce substantial population growth either directly or indirectly; or
B. Would the project displace substantial numbers of existing housing; or
C. Would the project displace substantial numbers of people, necessitating the construction of housing elsewhere?

FINDING: NO IMPACT:
This proposal will not construct or displace housing and will not otherwise induce population growth.

XIV. PUBLIC SERVICES

A. Would the project result in substantial adverse physical impacts associated with the provision of new or physically-altered public facilities in the following areas:

1. Fire protection?

FINDING: LESS THAN SIGNIFICANT IMPACT:

This proposal was reviewed by the Fresno County Fire Protection District (Fire District) which did not identify any concerns with the project. The proposal must comply with the California Code of Regulations Title 24 - Fire Code, and three sets of County-approved construction plans for the project must be approved by the Fire District prior to issuance of Building Permits by the County. These mandatory requirements will be included as Project Notes to be addressed during Site Plan Review (SPR), which will be required as a Condition of Approval. Conditions of the SPR may include design of parking and circulation areas, access, on-site grading and drainage, fire protection, landscaping, signage and lighting.

According to the Fire District, the subject parcel must annex into Community Facilities District (CFD) No. 2010-01 of the Fresno County Fire Protection District. This requirement will be included as a Project Note.
2. Police protection; or
3. Schools; or
4. Parks; or
5. Other public facilities?

FINDING: NO IMPACT:
No impacts on the provision of other services were identified in the project analysis.

XV. RECREATION

A. Would the project increase the use of existing neighborhood and regional parks; or
B. Would the project require the construction of or expansion of recreational facilities?

FINDING: NO IMPACT:
No such impacts were identified in the project analysis.

XVI. TRANSPORTATION/TRAFFIC

A. Would the project conflict with any applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation; or
B. Would the project conflict with an applicable congestion management program, including, but not limited to, level of service standards and travel demands measures?

FINDING: LESS THAN SIGNIFICANT IMPACT WITH MITIGATION INCORPORATED:
This proposal was reviewed by the Design Division of the Fresno County Department of Public Works and Planning, which determined that a Traffic Impact Study (TIS) was needed to effectively evaluate potential traffic-related impacts associated with the proposed expansion project. In accordance with this determination, a TIS was prepared for the proposal by Precision Civil Engineering, Inc.

The TIS prepared for the proposed expansion project by Precision Civil Engineering, Inc. includes analysis of intersection operations at State Route 180 (Kings Canyon Road) and Rio Vista Avenue, State Route 180 (Kings Canyon Road) and Reed Avenue, State Route 180 (Kings Canyon Road) and Oliver Street, and Trimmer Springs Road and the project site access. This analysis of intersection operations was conducted under the following scenarios: 1) Existing, 2) Near-Term, 3) Near-Term plus Phase I, 4) Cumulative, and 5) Cumulative plus Full Build-Out. Additionally, the TIS prepared for the proposed expansion project also includes analysis of the roadway operations and structural conditions of Belmont Avenue west of Academy Avenue, and Trimmer Springs Road south of the project site.

According to the TIS prepared for the proposed expansion project, it was not practical to obtain traffic counts at the intersections of Belmont Avenue and Oliver Street or State Route 180 (Kings Canyon Road) and Oliver Street due to closure and reconstruction of Belmont Avenue between Academy Avenue and Trimmer Springs Road. As such, traffic counts for the intersection of State Route 180 (Kings Canyon Road) and Oliver Street were derived from Fresno Council of Governments (COG) travel demand modeling data and the other State Route 180 (Kings Canyon Road) intersection traffic counts identified in this analysis.

Based upon the TIS prepared for the proposed expansion project by Precision Civil Engineering, Inc., prior to occupancy, the applicant/owner shall enter into an agreement with Fresno County agreeing to participate, on a pro-rata basis of 38% of the total cost for the maintenance and restoration of Trimmer Springs Road (approximately 2.3 mile segment from project site) and Oliver Street (approximately one mile segment from Belmont Avenue to State Route 180) for a period not to exceed 10 years. This agreement shall establish the existing baseline condition for Trimmer Springs Road and Oliver Street, and address the monitoring and evaluation of roadway pavement conditions, and the undertaking of roadway repairs and/or maintenance overlay as necessary to ensure project related traffic can be safely accommodated. The pro-rata share for the maintenance and restoration of said roadways shall not exceed $\$ 485,000$
over the term of this agreement. This requirement will be included as a Mitigation Measure to reduce adverse transportation and traffic impacts to a less than significant level.

* Mitigation Measure

1. In order to mitigate potential traffic impacts to County roadways, prior to occupancy, the applicant/owner shall enter into an agreement with Fresno County agreeing to participate, on a pro-rata basis of 38% of the total cost for the maintenance and restoration of Trimmer Springs Road (approximately 2.3 mile segment from project site) and Oliver Street (approximately one mile segment from Belmont Avenue to State Route 180) for a period not to exceed 10 years. This agreement shall establish the existing baseline condition for Trimmer Springs Road and Oliver Street, and address the monitoring and evaluation of roadway pavement conditions, and the undertaking of roadway repairs and/or maintenance overlay as necessary to ensure project related traffic can be safely accommodated. The pro-rata share for the maintenance and restoration of said roadways shall not exceed $\$ 485,000$ over the term of this agreement.
C. Would the project result in a change in air traffic patterns?

FINDING: NO IMPACT:

The project site is located approximately one mile northeast of a private airstrip identified as "Harris River Ranch Airport"; however, no adverse impacts to air traffic patterns were identified in the project analysis.
D. Would the project substantially increase traffic hazards due to design features; or
E. Would the project result in inadequate emergency access?

FINDING: NO IMPACT:
No such impacts were identified in the project analysis.
F. Would the project conflict with adopted plans, policies or programs regarding public transit, bicycle or pedestrian facilities or otherwise decrease the performance or safety of such facilities?

FINDING: LESS THAN SIGNIFICANT IMPACT:
Trimmer Springs Road is identified as a Class II Bikeway in the Transportation and Circulation Element of the General Plan; however, this proposal entails expansion of an existing facility, and no adverse alternative transportation impacts were identified in the project analysis.

XVII. UTILITIES AND SERVICE SYSTEMS

A. Would the project exceed wastewater treatment requirements; or
B. Would the project require construction of or the expansion of new water or wastewater treatment facilities?

FINDING: LESS THAN SIGNIFICANT IMPACT:
See discussion in Section VI.E Geology and Soils.
C. Would the project require or result in the construction or expansion of new storm water drainage facilities?

FINDING: LESS THAN SIGNIFICANT IMPACT:

See discussion in Section IX.E Hydrology and Water Quality.
D. Would the project have sufficient water supplies available from existing entitlements and resources, or are new or expanded entitlements needed?

FINDING: LESS THAN SIGNIFICANT IMPACT:
See discussion in Section IX.B Hydrology and Water Quality.
E. Would the project result in a determination of inadequate wastewater treatment capacity to serve project demand?

FINDING: LESS THAN SIGNIFICANT IMPACT:

See discussion in Section VI.E Geology and Soils.
F. Would the project be served by a landfill with sufficient permitted capacity; or
G. Would the project comply with federal, state and local statutes and regulations related to solid waste?

FINDING: NO IMPACT:
No such impacts were identified in the project analysis.

XVIII. MANDATORY FINDINGS OF SIGNIFICANCE

A. Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or
animal, or eliminate important examples of the major periods of California prehistory or history?

FINDING: LESS THAN SIGNIFICANT IMPACT WITH MITIGATION INCORPORATED:
Pursuant to discussion in Section IV (Biological Resources), no such impacts on biological resources were identified in the project analysis. Pursuant to discussion in Section V (Cultural Resources), this proposal may have impacts on cultural resources; however, the Mitigation Measure included in Section V (Cultural Resources) will reduce such impacts to a less than significant level.
B. Does the project have impacts that are individually limited, but cumulatively considerable?

FINDING: NO IMPACT:
No cumulatively considerable impacts were identified in the project analysis.
C. Does the project have environmental impacts which will cause substantial adverse effects on human beings, either directly or indirectly?

FINDING: NO IMPACT:
No substantial adverse impacts on human beings were identified in the project analysis.

CONCLUSION/SUMMARY

Based upon the Initial Study prepared for Classified Conditional Use Permit Application No. 3597 and Minor Variance Application No. 1287, staff has concluded that the project will not have a significant effect on the environment. It has been determined that there would be no impacts to population and housing, or recreation.

Potential impacts related to agricultural and forestry resources, biological resources, geology and soils, greenhouse gas emissions, hazards and hazardous materials, hydrology and water quality, land use and planning, mineral resources, noise, public services, and utilities and service systems have been determined to be less than significant.

Potential impacts relating to aesthetics, air quality, cultural resources, and transportation and traffic have been determined to be less than significant with the identified Mitigation Measures.

A Mitigated Negative Declaration is recommended and is subject to approval by the decisionmaking body. The Initial Study is available for review at 2220 Tulare Street, Suite A, Street Level, located on the southeast corner of Tulare and "M" Street, Fresno, California.

DC:
G:4360Devs\&PIn\PROJSEC\PROJDOCSICUP\3500-359913597\IS-CEQA\CUP3597 MV1287 IS wu.docx

County of Fresno

DEPARTMENT OF PUBLIC WORKS AND PLANNING STEVEN E. WHITE, DIRECTOR

DATE: November 22, 2017
TO: Department of Public Works and Planning, Attn: Bernard Jimenez, Assistant Director
Development Services, Attn: William M. Kettler, Division Manager
Development Services, Attn: Chris Motta, Principal Planner
Development Services, Current Planning, Attn: Marianne Mollring, Senior Planner
Development Services, Policy Planning, ALCC, Attn: Mohammad Khorsand
Development Services, Zoning \& Permit Review, Attn: Tawanda Mtunga
Development Services, Site Plan Review, Attn: Hector Luna
Development Services, Building \& Safety/Plan Check, Attn: Chuck Jonas
Development Services, Building \& Safety/Plan Check, CASp, Attn: Dan Mather
Development Engineering, Attn: Nadia Leon, Grading/Mapping
Road Maintenance and Operations, Attn: Randy Ishii/Frank Daniele/Nadia Lopez
Design Division, Special Projects/Road Projects, Attn: Mohammad Alimi/Dale Siemer
Design Division, Transportation Planning, Attn: Mohammad Alimi/Dale Siemer
Water and Natural Resources Division, Attn: Glenn Allen, Division Manager
Department of Public Health, Environmental Health Division, Attn: Kevin Tsuda/Deep
Sidhu/Steven Rhodes
Agricultural Commissioner, Attn: Les Wright
Sheriff's Office, Attn: Captain John Zanoni, Lt. John Reynolds, Lt. Louie Hernandez,
Lt. Kathy Curtice, Lt. Ryan Hushaw
U.S. Fish and Wildlife Service, San Joaquin Valley Division, Attn: Holley Kline (Note: Hard copy)
CA Regional Water Quality Control Board, Attn: Scott Moore
CA Regional Water Quality Control Board, Attn: Matt Scroggins
CA Regional Water Quality Control Board, Attn: Dale Harvey
CA Department of Fish and Wildlife, Attn: Renee Robison, Environmental Scientist
State Water Resources Control Board, Division of Drinking Water, Fresno District,
Attn: Carl Carlucci, Jose Robeldo
Dumna Wo Wah Tribal Government, Attn: Robert Ledger, Tribal Chairman/Eric
Smith, Cultural Resources Manager/Chris Acree, Cultural Resources Analyst
Picayune Rancheria of the Chuckchansi Indians, Attn: Tara C. Estes-Harter, THPO/Cultural Resources Director
Santa Rosa Rancheria Tachi Yokut Tribe, Attn: Ruben Barrios, Tribal Chairman/ Hector Franco, Director/Shana Powers, Cultural Specialist II
Table Mountain Rancheria, Attn: Leanne Walker-Grant, Tribal Chairperson
Table Mountain Rancheria, Attn: Robert Pennell, Cultural Resources Director/Kim Taylor, Cultural Resources Department/Sara Barnett, Cultural Resources Department
San Joaquin Valley Unified Air Pollution Control District (PIC-CEQA Division), Attn: PIC Supervisor
Fresno Irrigation District, Attn: William R. Stretch and Sen Saetern
Fresno County Fire Protection District, Attn: Chris Christopherson, Battalion Chief
FROM: Derek Chambers, Planner
Development Services Division

SUBJECT: Initial Study Application No. 7410 and Classified Conditional Use Permit Application No. 3597

APPLICANT: Kings River Packing
DUE DATE: December 7, 2017
The Department of Public Works and Planning, Development Services Division is reviewing the subject applications proposing to amend Classified Conditional Use Permit (CUP) Nos. 3307 and 3476 in order to allow expansion of an existing fruit packing and storage facility in the AE-20 (Exclusive Agricultural, 20-acre minimum parcel size) and AL-40 (Limited Agricultural, 40-acre minimum parcel size) Zone Districts.

The Department is also reviewing for environmental effects, as mandated by the California Environmental Quality Act (CEQA) and for conformity with plans and policies of the County.

Please review the proposal and respond to the questionnaire. Please answer the questions according to your specific area of expertise.

Based upon this review, a determination will be made regarding conditions to be imposed on the project, including necessary on-site and off-site improvements.

We must have your comments by December 7, 2017. Any comments received after this date may not be used.

NOTE - THIS WILL BE OUR ONLY REQUEST FOR WRITTEN COMMENTS. If you do not have comments, please provide a "NO COMMENT" response to our office by the above deadline (e-mail is also acceptable; see email address below).

Please address any correspondence or questions related to environmental and/or policy/design issues to me, Derek Chambers, Planner, Development Services Division, Fresno County Department of Public Works and Planning, 2220 Tulare Street, Sixth Floor, Fresno, CA 93721, or call (559) 600-4205 or email dchambers@co.fresno.ca.us

DC:
G:4360Devs\&PIn\PROJSEC\PROJDOCSICUP\3500-3599\3597\ROUTING\CUP3597 Routing Ltr.doc
Activity Code (Internal Review): 2381
Enclosures

County of Fresno

DEPARTMENT OF PUBLIC WORKS AND PLANNING STEVEN E. WHITE, DIRECTOR

DATE: \quad December 6, 2017
TO: \quad Southern San Joaquin Valley Information Center, Attn: Celeste Thomson
FROM: Derek Chambers, Planner
Development Services Division
SUBJECT: Initial Study Application No. 7410 and Classified Conditional Use Permit Application No. 3597-\$75.00 Review Fee Enclosed

APPLICANT: Kings River Packing
DUE DATE: December 21, 2017
The Department of Public Works and Planning, Development Services Division is reviewing the subject applications proposing to amend Classified Conditional Use Permit (CUP) Nos. 3307 and 3476 in order to allow expansion of an existing fruit packing and storage facility in the AE-20 (Exclusive Agricultural, 20-acre minimum parcel size) and AL-40 (Limited Agricultural, 40-acre minimum parcel size) Zone Districts.

The Department is also reviewing for environmental effects, as mandated by the California Environmental Quality Act (CEQA) and for conformity with plans and policies of the County.

Please review the proposal and respond to the questionnaire. Please answer the questions according to your specific area of expertise.

Based upon this review, a determination will be made regarding conditions to be imposed on the project, including necessary on-site and off-site improvements.

We must have your comments by December 21, 2017. Any comments received after this date may not be used.

NOTE - THIS WILL BE OUR ONLY REQUEST FOR WRITTEN COMMENTS. If you do not have comments, please provide a "NO COMMENT" response to our office by the above deadline (e-mail is also acceptable; see email address below).

Please address any correspondence or questions related to environmental and/or policy/design issues to me, Derek Chambers, Planner, Development Services Division, Fresno County Department of Public Works and Planning, 2220 Tulare Street, Sixth Floor, Fresno, CA 93721, or call (559) 600-4205 or email dchambers@co.fresno.ca.us

DC:
G:14360Devs\&PIn\PROJSEC\PROJDOCSICUP\3500-3599\3597\ROUTING\CUP3597 SSJVIC Routing Ltr.doc
Activity Code (Internal Review): 2381
Enclosures

County of Fresno

DEPARTMENT OF PUBLIC WORKS AND PLANNING STEVEN E. WHITE, DIRECTOR

DATE: January 22, 2018
TO: Southern San Joaquin Valley Information Center, Attn: Celeste Thomson
FROM: Derek Chambers, Planner
Development Services and Capital Projects Division
SUBJECT: Initial Study Application No. 7410 and Classified Conditional Use Permit Application No. 3597 - Cultural Resources Assessment

APPLICANT: Kings River Packing
DUE DATE: February 6, 2018
The Department of Public Works and Planning, Development Services Division is reviewing the subject applications proposing to amend Classified Conditional Use Permit (CUP) Nos. 3307 and 3476 in order to allow expansion of an existing fruit packing and storage facility in the AE-20 (Exclusive Agricultural, 20-acre minimum parcel size) and AL-40 (Limited Agricultural, 40-acre minimum parcel size) Zone Districts.

The Applicant has provided a Cultural Resources Assessment prepared for the project site by Peak \& Associates, Inc. (copy enclosed).

Based upon this review, a determination will be made regarding conditions to be imposed on the project, including necessary on-site and off-site improvements.

We must have your comments by February 6, 2018. Any comments received after this date may not be used.

NOTE - THIS WILL BE OUR ONLY REQUEST FOR WRITTEN COMMENTS. If you do not have comments, please provide a "NO COMMENT" response to our office by the above deadline (e-mail is also acceptable; see email address below).

Please address any correspondence or questions related to environmental and/or policy/design issues to me, Derek Chambers, Planner, Development Services Division, Fresno County Department of Public Works and Planning, 2220 Tulare Street, Sixth Floor, Fresno, CA 93721, or call (559) 600-4205 or email dchambers@co.fresno.ca.us

DC:
G:4360Devs\&PIn\PROJSEC\PROJDOCSICUP\3500-359913597\ROUTINGICUP3597 SSJVIC Routing Ltr 2.doc
Activity Code (Internal Review): 2381
Enclosures

County of Fresno

DEPARTMENT OF PUBLIC WORKS AND PLANNING STEVEN E. WHITE, DIRECTOR

CULTURAL RESOURCE ASSESSMENT

DATE: January 22, 2018
TO: Dumna Wo Wah Tribal Government, Attn: Robert Ledger, Tribal Chairman/Eric Smith, Cultural Resources Manager/Chris Acree, Cultural Resources Analyst
Picayune Rancheria of the Chuckchansi Indians, Attn: Tara C. Estes-Harter, THPO/Cultural Resources Director
Santa Rosa Rancheria Tachi Yokut Tribe, Attn: Ruben Barrios, Tribal Chairman/ Hector Franco, Director/Shana Powers, Cultural Specialist II
Table Mountain Rancheria, Attn: Leanne Walker-Grant, Tribal Chairperson
Table Mountain Rancheria, Attn: Robert Pennell, Cultural Resources Director/Kim Taylor, Cultural Resources Department/Sara Barnett, Cultural Resources Department

FROM: Derek Chambers, Planner
Development Services and Capital Projects Division
SUBJECT: Initial Study Application No. 7410 and Classified Conditional Use Permit Application No. 3597 - Cultural Resources Assessment

APPLICANT: Kings River Packing
DUE DATE: February 6, 2018
The Department of Public Works and Planning, Development Services Division is reviewing the subject applications proposing to amend Classified Conditional Use Permit (CUP) Nos. 3307 and 3476 in order to allow expansion of an existing fruit packing and storage facility in the AE-20 (Exclusive Agricultural, 20-acre minimum parcel size) and AL-40 (Limited Agricultural, 40-acre minimum parcel size) Zone Districts.

The Applicant has provided a Cultural Resources Assessment prepared for the project site by Peak \& Associates, Inc. (copy enclosed).

Based upon this review, a determination will be made regarding conditions to be imposed on the project, including necessary on-site and off-site improvements.

We must have your comments by February 6, 2018. Any comments received after this date may not be used.

NOTE - THIS WILL BE OUR ONLY REQUEST FOR WRITTEN COMMENTS. If you do not have comments, please provide a "NO COMMENT" response to our office by the above deadline (e-mail is also acceptable; see email address below).

Please address any correspondence or questions related to environmental and/or policy/design issues to me, Derek Chambers, Planner, Development Services Division, Fresno County Department of Public Works and Planning, 2220 Tulare Street, Sixth Floor, Fresno, CA 93721, or call (559) 600-4205 or email dchambers@co.fresno.ca.us

DC:
G:4360Devs\&PIIIPROJSECIPROJDOCSICUP13500-359913597/ROUTINGICUP3597 Cultural Resource Routing Ltr.doc
Activity Code (Internal Review): 2381
Enclosures

APPLICATION FOR:

LOCATION:
Southwest corner of Tułare \& " $\mathrm{M}^{\prime \prime}$ Streets, Suite A Street Level

Fresno Phone: (559) 600-4497
Toll Free: 1-800-742-1011 Exl.0-4497
DESGRIPTION OF PROPOSED USE ORREQUEST:

CEQA DOCUMENTATION: $\overline{\text { Inilial Sludy } \quad \square \text { PER } \quad \square \mathrm{N} A}$
PLEASE USE FILL-IN FORM OR PRINT IN BLACK INK. Answer all questions completely. Attach required site plans, forms, statements, and deeds as specified on the Pre-Application Review. Attach Copy of Deed, including Legal Description.
 the above described property and that the application and attached documents are in all respects true and correct to the best of my knowledge. The foregoing declaration is made under penalty of perjury.

Kings River Packing-Keith Gardner, 21083 E, Trimmer Springs, Sanger, 93657 559-287-2056 | owner (Print or Typel | Address cily | zip | Phone |
| :--- | :--- | :--- | :--- |

 CONTACT EMAIL: frankf@kingorange.com and rt@evr-eng.com

OFFICE USE ONLY (PRINT FORM ON GREEN PAPER)	UTILITIES AVAILABLE:
Application Type / No.: UP Fee: \$	
Application Type / No.: Fee: $\$$	WATER: Yes X/ No \square
Application Type / No.: Fee: \$	Agency: Private Well
Application Type / No.: Fee: \$	
PER/Initial Study No.: IS 7 ¢	SEWER: Yes X/No \square
Ag Department Review: Fee: $\$$	Agency: Private Septic System
Health Department Review: Fee: \$	Agency. Private Septic System
Received By: Invoice No.: TOTAL: \$	
STAFF DETERIMINATION: This permit is sought under Ordinance Section:	Sect-Twp/Rg: __ T_ S / R
	APN\# _- - -
Related Application(s):	APN \# - - - ${ }^{-}$
Zone District: AE-20	APN\# _- ${ }^{-}{ }^{-}$
Parcel Size:	

Development Maj l to'.
Services Brad Bushed
Pre-Application Review
2083 E. Trimmer Spins Red.
Division Song er, CA 93657 Department of Public Works and Planning
Sanger, CA 93157
NUMBER: $\frac{39295}{\text { APPLICANT: Brad Bishel }}$
PHONE: 559$) 787-205(n$

Property location: 21095 E. Trimmer Springs Road AFN: 158 CNEL: Db Yes (level) LOW WATER: No ALCC: No Yes \# VIOLATION NO. ZONE DISTRICT: AE AO ; SRA: NOL Yes \qquad WITHIN $1 / 2$ MILE OF CITY: NO) 1
\qquad
\qquad HOMESITE DECLARATION REQ'D.: NO

Yes

 LOT STATUS:Zoning: () Conforms; (V) Legal Non-Conforming lot; () Deed Review Req'd (see Form \#236)
Merger: May be subject to merger: ${ }^{\text {iV o }}$, Yes ZN\#

Initiated
In process
 SCHOOL FEES: No ESV DISTRICT: Sanger (NAMed PERMIT JACKET: No FMFGD FEE AREA: () Outside (6) District No. Wi thin a Ruralstiemm LOOD PRONE: No \qquad PROPOSAL Pre-Apolication for a Conditional (se, Permit for anexponsion of an existing fruit packing and stomaco freflity. COMMENTS: No Charge lire -Hop. T.M, 10-1MI7 ORD. SECTION(S): 8lln. 3 A BY: lawanda, YVthryag, DATE: $10 / 112017$

County of Fresno
DEPARTMENT OF PUBLIC WORKS AND PLANNING STEVEN E. WHITE, DIRECTOR

INITIAL STUDY APPLICATION

INSTRUCTIONS

Answer all questions completely. An incomplete form may delay processing of your application. Use additional paper if necessary and attach any supplemental information to this form. Attach an operational statement if appropriate. This application will be distributed to several agencies and persons to determine the potential environmental effects of your proposal. Please complete the form in a legible and reproducible manner (i.e., USE BLACK INK OR TYPE).

OFFICE USE ONLY
Is No. 7410
Project
No(s). Cup 3597
Application Rec'd.:
Derek Chambers
い / 17/2017

GENERAL INFORMATION

Hazelton Farm, Inc./

1. Property $O_{\text {wner }}$:Kings River Packing-Keith Gardner

Phone/Fax 559-787-2056
Mailing
Address.
$\begin{array}{cl}21136 \text { Trimmer Springs Road } & \text { Sanger } \\ \text { Street } & \text { City }\end{array}$
CA 93657
State/Zip
2. Applicant : Kings River Packing-Frank Flores

Phone/Fax: 559-907-6176
$\begin{array}{ll}\text { Mailing: } \\ \text { Address: } 21083 \text { E. Trimmer Springs Road } & \text { Sanger } \\ \text { Street } & \text { City }\end{array}$
CA 93657
State/Zip
3. Representative: EVR Consulting Engineers_Phone/Fax: 619-307-9770

Mailing
Address:
Address: $\frac{1480 \text { Broadway, \#2619 }}{\text { Street }}$
San Diego
CA 92101
City
State/Zip
4. Proposed Project:

Two-phase expansion of an existing commercial fruit packing and storage facility.
5. Project Location: The project site is located on the east side of Trimmer Springs Road, approx. 3 miles north of its intersection with Belmont Ave.
6. Project Address: 21083 E. Trimmer Springs Road, Sanger, CA 93657
7. Section/Township/Range: \qquad 11 1
8. Parcel Size: 28.83 acres
9. Assessor's Parcel No. 158-070-65, 69, 76 and 77
10. Land Conservation Contract No. (If applicable): Williamson Act Contract No. 225
11. What other agencies will you need to get permits or authorization from:

LAFCo (annexation or extension of services)	_-	SJVUAPCD (Air Pollution Control District) Ceclamation Board
CALTRANS	$=$	Department of Energy
Division of Aeronautics	-	Airport Land Use Commission

12. Will the project utilize Federal funds or require other Federal authorization subject to the provisions of the National Environmental Policy Act (NEPA) of 1969 ? \qquad Yes X No

If so, please provide a copy of all related grant and/or funding documents, related information and environmental review requirements.
13. Existing Zone District ${ }^{1}$: AE-20
14. Existing General Plan Land Use Designation ${ }^{1}$: Agrilcultural

ENUIRONMENTAL INFORMATION

15. Present land use: The land to be used for this building is currently vacant, asphalt-paved land.

Describe existing physical improvements including buildings, water (wells) and sewage facilities, roads, and lighting. Include a site plan or map showing these improvements:
Existing fruit packing \& storage facility, with a private water well and private septic systems. Lighting for the site is achieved with building wall packs and light poles.
Describe the major vegetative cover: Redwoods along street frontage. Citrus fruit orchards.
Any perennial or intermittent water courses? If so, show on map: $\frac{\text { Kings River and Gould Canal on }}{\text { southeast. }}$
Is property in a flood-prone area? Describe:
Partially within Flood Zone X and Flood Zone AE
16. Describe surrounding land uses (e.g., commercial, agricultural, residential, school, etc.):

North: agricultural-citrus fruit orchard
South: agricultural-citrus fruit orchard
East: Kings River and FID canal
West:_ agricultural-citrus fruit orchard
17. What land use(s) in the area may be impacted by your Project?: Residential
\qquad
18. What land use(s) in the area may impact your project?: None
19. Transportation:

NOTE: The information below will be used in determining traffic impacts from this project. The data may also show the need for a Traffic Impact Study (TIS) for the project.
A. Will additional driveways from the proposed project site be necessary to access public roads? X Yes \qquad No
B. Daily traffic generation:

1. Resittential-Number of Units

Lot Size
Single Family
Aparinents
II. Commercial - Number of Employees

Number of Salesment
Number of Delivery Trucks See attached Operational

Total Square Footage of Building \qquad
III. Describe and quantify other traffic generation activities: \qquad
\qquad
\qquad
20. Describe any source(s) of noise from your project that may affect the surrounding area: None
\qquad
21. Describe any source(s) of noise in the area that may affect your project: None
\qquad
22. Describe the probable source(s) of air pollution from your project: None
23. Proposed source of water:
(X) private well
() community system ${ }^{3}-$-name:
24. Anticipated volume of water to be used (gallons per day) ${ }^{2}: 4500$
25. Proposed method of liquid waste disposal:
(X) septic system/individual
() community system ${ }^{3}$-name \qquad
26. Estimated volume of liquid waste (gallons per day) ${ }^{2}: 4500$
27. Anticipated type(s) of liquid waste: restroom facilities and fruit wash water
28. Anticipated type(s) of hazardous wastes ${ }^{2}$: None
29. Anticipated volume of hazardous wastes ${ }^{2}$: None
30. Proposed method of hazardous waste disposal ${ }^{2}$: None
31. Anticipated type(s) of solid waste: restroom facilities and rotted fruit
32. Anticipated amount of solid waste (tons or cubic yards per day): 10 cy
33. Anticipated amount of waste that will be recycled (tons or cubic yards per day): one ton
34. Proposed method of solid waste disposal: commercial carrier, 3 x per week
35. Fire protection district(s) serving this area; Fresno County Fire (Cal Fire)
36. Has a previous application been processed on this site? If so, list title and date: CUP January 2015
37. Do you have any underground storage tanks (except septic tanks)? Yes \qquad No X
38. If yes, are they currently in use? Yes \qquad No \qquad
TO THE BEST OF MY KPOWLEDGE, THE FOREGOING INFORMATION IS TRUE.

Signature

${ }^{1}$ Refer to Development Services Conference Checklist
${ }^{2}$ For assistance, contact Environmental Health System, (559) 600-3357
${ }^{3}$ For County Service Areas or Waterworks Districts, contact the Resources Division, (559) 600-4259

NOTICE AND ACKNOWLED GMENT

INDEMNIFICATION AND DEFENSE

The Board of Supervisors has adopted a policy that applicants should be made aware that they may be responsible for participating in the defense of the County in the event a lawsuit is filed resulting from the County's action on your project. You may be required to enter into an agreement to indemnify aud defend the County if it appears likely that litigation could result from the County's action. The agreement would require that you deposit an appropriate security upon notice that a lawsuit has been filed. In the event that you fail to comply with the provisions of the agreement, the County may rescind its approval of the project.

STATE FISH AND WILDLIFE FEE

State law requires that specified fees (effective January 1, 2017: \$3,078.25 for an EIR; \$2,216.25 for a (Mitigated/Negative Declaration) be paid to the California Department of Fish and Wildlife (CDFW) for projects which must be reviewed for potential adverse effect on wildlife resources. The County is required to collect the fees on behalf of CDFW. A $\$ 50.00$ handling fee will also be charged, as provided for in the legislation, to defray a portion of the County's costs for collecting the fees.

The following projects are exempt from the fees:

1. All projects statutorily exempt from the provisions of CEQA (California Environmental Quality Act).
2. All projects categorically exempt by regulations of the Secretary of Resources (State of California) from the requirement to prepare environmental documents.

A fee exemption may be issued by CDFW for eligible projects deternined by that agency to have "no effect on wildlife." That determination must be provided in advance from CDFG to the County at the request of the applicant. You may wish to call the local office of CDFG at (559) 222-3761 if you need more information.

Upon completion of the Initial Study you will be notified of the applicable fee. Payment of the fee will be required before your project will be forwarded to the project analyst for scheduling of any required hearings and final processing. The fee will be refunded if the project should be denied by the County.

Date

DOCUMENT1

EXISTING ZONING MAP

06
0
0

06

May 9, 2018

County of Fresno
Planning Department

2220 Tulare St.
Fresno, CA 93721

RE:	Kings River Packing (KRP) Operational Statement
Owner:	Hazelton Farms, Inc.
Project:	Expansion of Existing Fruit Packing and Storage Facility
Address:	21083 and 21095 E. Trimmer Springs Road
	Sanger, CA 93657
APN:	$158-070-65, \ldots 69, \ldots 76$ and $\ldots 77$

To Whom It May Concern:
The proposed project will be located at 21083 \& 21095 East Trimmer Springs Road, Sanger, Ca. 93657 on an existing 28.83 acre parcel. The proposed project involves a facility expansion that will be completed in two phases; Phase 1 consisting of the construction of a 77,500 sf (approx.) metal building addition (Building ' E ') on the north end, to be used as fruit cold storage and shipping office. There will also be a significant amount of site work, including a new loading dock, completed during the first phase. Phase 2 will consist of the construction a 173,000sf (approx.) metal building addition (Building ' F ') on the south end, to be used for packing operations and a new main office. The use of the new buildings will be in line with the current operations of the existing commercial fruit packing facility. The land to be used for the proposed building is currently vacant, graded, asphalt-paved land.

The existing commercial fruit packing facility has been in operation since 1977 and was last approved under CUP 3476 in January 2015. The company's operation has consisted of the sorting and packing of oranges, lemons and other citrus fruits. Over the years, we have seen an increase in product demand, as well as an increase in the number of growers we service. This has prompted us to prepare this master site plan, in order to accommodate our future projected growth. As we grow, we will also add new automated equipment to increase the facility's efficiency.

The facility will operate year-around, with a peak season between January to April. The hours of operation will be six days per week, 24 hours per day, during the peak season. At peak season, we will operate two shifts: $1^{\text {st }}$ shift, 6 am to 3 pm and the $2^{\text {nd }}$ shift, 3 pm to 12 am . With the growth we've experienced in the past few years, we anticipate a yearly average of about 200 fulltime employees, with up to 300 during the peak season and only 100 during the off season. These figures are based on the completion of Phase 2.

During the peak season we will have about 120 one-way truck trips per day, spread out throughout the day. During the off season we will only have about 5 truck trips per day, which consist of service deliveries and trash pickup. Access to the site is currently provided off of a paved road, East Trimmer Springs Road, from the north and the south. We anticipate 6 to 8 visitors per day. There will not be any caretakers living onsite.

The site will have the 374 auto parking stalls for visitors and employees, 8 ADA stalls and approximately 40 truck parking stalls on the north end. No goods are sold on-site. The product is shipped by truck on demand or is stored in cold storage until it is needed.

The facility currently produces approximately 4,500 gallons of liquid waste per day. The liquid waste consists of water used to wash the fruit. The wash water is recirculated and reused as wash water. It is then reclaimed and discharged into the surrounding fields. All other liquid waste is disposed of through the existing septic tanks and leach fields that are located on the site. The proposed building will not increase the amount of liquid waste being produced by the facility. Solid waste will be picked up by a commercial carrier on a weekly basis.

The facility's water will be provided by a new water well, which will be located on the property. The existing water well will be decommissioned. The facility uses approximately 4,500 gallons of water per day, during the peak season.

Onsite advertising consists of a $4^{\prime}-00^{\prime \prime} \times 7^{\prime}-0$ " pole sign, which is located at the main entrance to the site. The proposed buildings will not cause an unsightly appearance or produce dust, noise, glare or any odors. Lighting for the site is provided through a combination of wallpacks and pole-mounted lighting. There are no outdoor intercom systems. Facility communications are accomplished through the use of two-way radios.

The site is currently surrounded on three sides by orange orchards and the Kings River and an irrigation canal lie on the east side of the property. There is an existing landscape area in front of the existing main office and redwood trees along most of the Trimmer Springs street frontage.

Respectfully submitted,

Keith Gardner

Kings River Packing

EXPANSION OF EXISTING PACKING AND STORAGE FACILITY

FOR

KINGS RIVER PACKING
21083 AND 21095 EAST TRIMMER SPRINGS ROAD
SANGER, CA 93657

 Connrof fensuc ca

arsor
\qquad
\qquad umren aeseyum
 newrrmas.

site plan kenvotes

os Prooosel wastors stipme office

07) 20 rife Lane

13 Prooerar LIME

${ }^{16}$ ExSTITGAG Pump fietrrach servine

20 ExStms ste entrance of oe mantaneo

${ }^{24}$ new Natrex weu

In Lumis or exsmicm Pawne

Parking summary

ZONNG SUMMARY (AE20. SECTION 866.5)

Notes:
2. THE PLAA SYMBEL LNHICATES THE NUMBER OF THE PHOTO ON AG. 1 AND DIRECTION OF VUEW

CULTURAL RESOURCE ASSESSMENT

FOR THE EXPANSION OF EXISTING FRUIT PACKING AND STORAGE FACILITY FRESNO COUNTY CALIFORNIA

Prepared by
Melinda A. Peak
Peak \& Associates, Inc.
3941 Park Drive, Suite 20-329
El Dorado Hills, CA 95762
(916) 939-2405

Prepared for
Kings River Packing
21083 E. Trimmer Springs Road
Sanger, CA
(559)787-2056

January 12, 2018 (Job \#17-110)

INTRODUCTION

The project involves a facility expansion on a 28.83 -acre group of parcels in Fresno County, California, currently in use as a commercial fruit-packing facility ("Project Area"). The facility is located at 21083 and 21095 E. Trimmer Springs Road, Sanger, California, south of E. Trimmer Springs Road and on the north side of the Kings River.

The project will take place in two phases; Phase 1 will consist of the construction of a $77,500 \mathrm{sf}$ metal building addition on the north end of Building E, to be used as fruit cold storage and a shipping office. Other work will be conducted on the site including a new loading dock. Phase 2 will consist of the construction of a 173,000 sf metal building addition to Building F on the south end for packing operations and a new main office (Figure 1). Many portions of the overall Project Area have been graded and paved.

The site will have the 374 auto parking stalls for visitors and employees, 8 ADA stalls and approximately 40 truck parking stalls on the north end. No goods are sold on-site. The product is shipped by truck on demand or is stored in cold storage until it is needed.

The facility currently produces approximately 4,500 gallons of liquid waste per day. The liquid waste consists of water used to wash the fruit. The wash water is recirculated and reused as wash water. It is then reclaimed and used to irrigate the surrounding fields. All other liquid waste is disposed of through the existing septic tanks and leach fields that are located on the site. The proposed building will not increase the amount of liquid waste being produced by the facility. Solid waste will be picked up by a commercial carrier on a weekly basis.

The facility's water will be provided by a new water well, which will be located on the property. The existing water well will be decommissioned. The facility uses approximately 4,500 gallons of water per day, during the peak season.

The Project Area is located within the southwest quarter of section 24, Township 13 South, Range 23 East, mapped on the Piedra USGS topographic quadrangle (Figure 2).

Melinda A. Peak, senior historian/archeologist with Peak \& Associates, Inc. served as principal investigator for the study with Michael Lawson (resumes, Appendix 1), completing the field survey.

STATE REGULATIONS

State historic preservation regulations affecting this project include the statutes and guidelines contained in the California Environmental Quality Act (CEQA; Public Resources Code sections 21083.2 and 21084.1 and sections 15064.5 and 15126.4 (b) of the CEQA Guidelines). CEQA Section 15064.5 requires that lead agencies determine whether projects may have a significant effect on archaeological and historical resources. Public Resources Code Section 21098.1 further

Figure 2
cites: A project that may cause a substantial adverse change in the significance of an historical resource is a project that may have a significant effect on the environment.

An "historical resource" includes, but is not limited to, any object, building, structure, site, area, place, record or manuscript that is historically or archaeologically significant (Public Resources Code section 5020.1).

Advice on procedures to identify such resources, evaluate their importance, and estimate potential effects is given in several agency publications such as the series produced by the Governor's Office of Planning and Research (OPR), CEQA and Archaeological Resources, 1994. The technical advice series produced by OPR strongly recommends that Native American concerns and the concerns of other interested persons and corporate entities, including, but not limited to, museums, historical commissions, associations and societies be solicited as part of the process of cultural resources inventory. In addition, California law protects Native American burials, skeletal remains, and associated grave goods regardless of the antiquity and provides for the sensitive treatment and disposition of those remains (California Health and Safety Code Section 7050.5, California Public Resources Codes Sections 5097.94 et al).

The California Register of Historical Resources (Public Resources Code Section 5020 et seq.)

The State Historic Preservation Office (SHPO) maintains the California Register of Historical Resources (CRHR). Properties listed, or formally designated as eligible for listing, on the National Register of Historic Places are automatically listed on the CRHR, as are State Landmarks and Points of Interest. The CRHR also includes properties designated under local ordinances or identified through local historical resource surveys.

For the purposes of CEQA, an historical resource is a resource listed in, or determined eligible for listing in the California Register of Historical Resources. When a project will impact a site, it needs to be determined whether the site is an historical resource. The criteria are set forth in Section 15064.5(a) (3) of the CEQA Guidelines, and are defined as any resource that does any of the following:
A. Is associated with events that have made a significant contribution to the broad patterns of California's history and cultural heritage;
B. Is associated with the lives of persons important in our past;
C. Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or
D. Has yielded, or may be likely to yield, information important in prehistory or history.

In addition, the CEQA Guidelines, Section 15064.5(a) (4) states:

The fact that a resource is not listed in, or determined to be eligible for listing in the California Register of Historical Resources, not included in a local register of historical resources (pursuant to section 5020.1(k) of the Public Resources Code), or identified in an historical resources survey (meeting the criteria in section $5024.1(\mathrm{~g})$ of the Public Resources Code) does not preclude a lead agency from determining that the resource may be an historical resource as defined in Public Resources Code section 5020.1(j) or 5024.1.

California Health and Safety Code Sections 7050.5, 7051, And 7054

These sections collectively address the illegality of interference with human burial remains, as well as the disposition of Native American burials in archaeological sites. The law protects such remains from disturbance, vandalism, or inadvertent destruction, and establishes procedures to be implemented if Native American skeletal remains are discovered during construction of a project, including the treatment of remains prior to, during, and after evaluation, and reburial procedures.

California Public Resources Code Section 15064.5(e)

This law addresses the disposition of Native American burials in archaeological sites and protects such remains from disturbance, vandalism, or inadvertent destruction. The section establishes procedures to be implemented if Native American skeletal remains are discovered during construction of a project and establishes the Native American Heritage Commission as the entity responsible to resolve disputes regarding the disposition of such remains.

Assembly Bill 52

Assembly Bill (AB) 52 establishes a formal consultation process for California tribes as part of CEQA and equates significant impacts on tribal cultural resources with significant environmental impacts. AB 52 defines a "California Native American Tribe" as a Native American tribe located in California that is on the contact list maintained by the Native American Heritage Commission. AB 52 requires formal consultation with California Native American Tribes prior to determining the level of environmental document if a tribe has requested to be informed by the lead agency of proposed projects. AB 52 also requires that consultation address project alternatives, mitigation measures, for significant effects, if requested by the California Native American Tribe, and that consultation be considered concluded when either the parties agree to measures to mitigate or avoid a significant effect, or the agency concludes that mutual agreement cannot be reached. Under AB 52, such measures shall be recommended for inclusion in the environmental document and adopted mitigation monitoring program if determined to avoid or lessen a significant impact on a tribal cultural resource.

CULTURAL SETTING

Archeology

The Central Valley region was among the first in the state to attract intensive fieldwork, and research has continued to the present day. This has resulted in a substantial accumulation of data, but the emphasis has been in the northern portion of the valley. In the early decades of the 1900s, E.J. Dawson explored numerous sites near Stockton and Lodi, later collaborating with W.E. Schenck (Schenck and Dawson 1929). By 1933, the focus of work was directed to the Cosumnes locality, where survey and excavation were conducted by the Sacramento Junior College (Lillard and Purves 1936).

Excavation data, in particular from the stratified Windmiller site (CA-SAC-107), suggested two temporally distinct cultural traditions. Later work at other mounds by Sacramento Junior College and the University of California, Berkeley, enabled the investigators to identify a third cultural tradition, intermediate between the previously postulated Early and Late Horizons. The threehorizon sequence, based on discrete changes in ornamental artifacts and mortuary practices, as well as on observed differences in soils within sites (Lillard, Heizer and Fenenga 1939), was later refined by Beardsley (1954). An expanded definition of artifacts diagnostic of each time period was developed, and its application extended to parts of the central California coast. Traits held in common allow the application of this system within certain limits of time and space to other areas of prehistoric central California.

In the southern San Joaquin Valley, with the exception of Hewes's excavation at CA-FRE-48 (the Tranquility Site), the foci of early investigations have been the old shorelines of the interior lakes; Tulare, Kern, and Buena Vista. In 1899, Dr. P. M. Jones directed fieldwork in the Buena VistaTulare Lake area of Kern County. Jones investigated 150 mounds and conducted trenching of several sites including CA-KER-53. In 1909, N. C. Nelson investigated prehistoric Site CA-KER49, which is located to the west of Buena Vista Lake. Later, four surveys and excavations were conducted in the same locale under the auspices of the University of California. A compilation of these investigation results was published in 1926 by Gifford and Schenck.

As a result of this early work, an elaborate culture complex was defined for the late prehistoric period. This complex can be ascribed probably to the Yokuts and their direct ancestors. The material culture of this late temporal period complex included steatite vessels and beads, finelymade projectile points, pottery, shaped stone mortars, Tivela disc beads, use of asphaltum, and the presence of metates and manos. Flexed burials were the predominant interment mode. Earlier complexes underlying the late cultural expressions were represented by chipped stone crescents, large projectile points, atlatl spurs, and weights. Mortuary practices, generally thought to be related, include extended rather than flexed burial position, a situation analogous to that of the northern valley (Gifford and Schenck 1926; Lillard, Heizer, and Fenenga 1939; Moratto 1972).

Presence of "Early Man," although not found in direct association with extinct animals, is demonstrated by the frequency of chipped stone crescents and fluted points similar to those of the

Clovis-Folsom Complex in the American Southwest. Although fluted points have been found near the shores of Tulare Lake, an area that has also produced surface finds of extinct mammal bone of Pleistocene age, the association is not substantiated by controlled excavations and remains speculative (Riddell and Olsen 1969). Most of the point collection had been acquired by D. Witt over a period of 30 years.

Under the direction of Wedel (1941), the Civil Works Administration, in conjunction with the Smithsonian Institution, initiated the first major excavations using stratigraphic controls. Investigations of CA-KER-39 and CA-KER-60 as well as several smaller sites near Buena Vista Lake produced evidence of two distinct cultural entities or occupation periods. Wedel lacked methods for dating these two entities by cross-comparison of the assemblages, he tentatively stated that the early occupation at Buena Vista Lake appeared to be temporally older and less developed than the Early Horizon (Windmiller Pattern) of the Delta region. He compared this early component to the Oak Grove or Milling Stone culture of the Santa Barbara area (Rogers 1939). He divided the later cultural entity into two distinct phases, both clearly distinguished from the earlier cultural phase by artifact types. Wedel (1941:144-145) estimated that neither of these cultural periods exceeded 1500 B.P. (years Before the Present). Later, other investigators proposed far earlier ages for these early occupations, with dates ranging from 2000 to 7000 B.P. (Baumhoff and Olmstead 1963, 1964; Heizer 1964; Meighan 1959).

Later investigations in 1963 and 1964 at CA-KER-116 near Buena Vista Lake produced materials similar to Wedel's early occupation. These materials occurred in the lower levels of the "upper deposit," while an even deeper cultural deposit yielded materials similar to those of the San Dieguito Complex. Artifacts included a chipped stone crescent, crude point fragments, and an atlatl spur. Radiocarbon age determinations on shell from the lowest cultural levels returned a date of circa 8200 B.P. (Fredrickson and Grossman 1966, 1977; Fredrickson 1967).

Despite the previously mentioned investigations, the prehistory of the southern San Joaquin remains as yet poorly understood, without a tightly defined chronological sequence of cultural development.

Ethnology

Ethnographic literature is often uncertain in definition of cultural boundaries for Indian groups. Early displacement by white intrusion resulted in population shifts to avoid conflict with the Spanish, and later with the miners and settlers. The ravages of disease and warfare decimated the native people, further weakening cultural identity. Informants were often uncertain of original territories of the various tribal groupings.

The Foothill Yokuts were members of the Penutian language family which held all of the Central Valley, San Francisco Bay Area, and the Pacific Coast from Marin County to near Point Sur. The Yokuts differed from other ethnographic groups in California as they had true tribal divisions with group names (Kroeber 1925). Each tribe spoke a particular dialect, common to its members, but similar enough to other Yokuts that they were mutually intelligible (Kroeber 1925).

The Foothill Yokuts were a group of about 15 named tribes who occupied the western Sierra Nevada foothills from the Fresno River to the Kern River. A further subdivision separated the groups into northern, central and southern groups. The area controlled by individual groups varied over time. There is no information to indicate that there was a village in the project vicinity, but this does not preclude the possibility.

Trade was well developed, with mutually beneficial interchange of needed or desired goods. Obsidian, rare in the San Joaquin Valley, was obtained by trade with Paiute and Shoshoni groups on the eastern side of the Sierra Nevada, where numerous sources of this material are located, and to some extent from the Napa Valley to the north. Shell beads, obtained by the Yokuts from coastal people, and acorns, rare in the Great Basin, were among many items exported to the east by Yokuts traders (Davis 1961).

Economic subsistence was based on the acorn, with substantial dependency on gathering and processing of wild seeds and other vegetable foods. The rivers, streams, and sloughs which formed a maze within the valley provided abundant food resources such as fish, shellfish, and turtles. Game, wild fowl, and small mammals were trapped and hunted to provide protein augmentation of the diet. In general, the eastern portion of the San Joaquin Valley provided a lush environment of varied food resources, with the estimated large population centers reflecting this abundance (Cook 1955; Baumhoff 1963).

Settlements were oriented along the water ways, with their village sites normally placed adjacent to these features for their nearby water and food resources. House structures varied in size and shape (Latta 1949; Kroeber 1925). The housepit depressions ranged in diameter from between 3 to 18 meters.

Latta (1949:99) reported that a village of 200 to 300 Yokuts might have four or five large houses that were used for ten or twelve years or until a family member died, at which time the Indians burned the house in which the death had occurred. If a sick or aged person died outside the dwelling, the family did not burn the house. When a Northern Yokuts died, his body was cremated or buried in a flexed position. Southern tribes normally buried their dead, although they did cremate shamans, persons who died away from their village and, among the Tachi, persons of great importance.

The Yokuts experienced severe depopulation after contact with the Spanish and subsequent explores. The most devastating impacts of the Spanish colonization effort were not the result of military conflicts, but came from Old World diseases newly introduced to the native people.

Historical Context

The early recorded inhabitants of the region were members of the Yokuts tribe. Although the Spanish missions were established closer to the Pacific coast between 1769 and 1817, the general project area was first visited in the early 1800s by Spanish explorers, who visited the San Joaquin Valley with three goals: to search for runaway neophytes from the missions in the coastal regions,
to punish the Indian raiders, and to select sites for new missions. In 1806, a group led by Gabriel Moraga and Father Pedro Muñoz, left Mission San Juan Bautista heading north to about the Mokelumne River. They then turned south, and travelled along the edge of the mountains crossing the San Joaquin River and passing through Tejon Pass, arriving at Mission San Fernando. In 1815, José Dolores Pico marched an expedition group from Monterey into the region. Following the San Joaquin River, he passed through the area in search of runaways, traveling as far south as the Kern River. The expedition returned to the starting point in Monterey with nine prisoners and a number of horses.

After control of California passed from Spain to Mexico in 1822, Mexican explorations into the interior continued, with José Dolores Pico conducting a major expedition along the San Joaquin River in 1825-1826. This expedition was considered successful in that some neophytes were captured, hostile Indians killed, some of the tribal groups intimidated, and some stolen horses recovered. In 1828, Sebastián Rodríguez led a similar expedition into the same region. His expedition captured a number of neophytes as well as some of the stolen horses, an item that had become an important dietary staple for the Indian tribes in the San Joaquin Valley region (Beck and Haase 1974).

The expeditions did not leave physical evidence, but there were definitely effects to the Native American populations. Causing even more of an effect on the native population were the diseases brought in to the Native populations of the Central Valley in the early 1830s.

In Fresno County, there was only one early land grant, a rancho along the current southern border of the county: Laguna de Tache. The era of the Spanish and Mexican land grants did not directly affect the Project Area.

The extension of the railroad system throughout the San Joaquin Valley allowed the increased expansion of a market for the agricultural production of the region. A branch line of the Southern Pacific Railroad (first known as the Pollasky Railroad or the San Joaquin Railroad) was built through this region circa 1891. Other lines were extended from the main line in this region, with a branch of the Atkinson, Topeka and Santa Fe located south of the Kings River.

The Enterprise Canal was built in 1891 to deliver Kings River water to the agricultural areas to the west, enabling the settlement of large tracts of land in Fresno County.

Another feature that formerly crossed the Project Area is the Kings River Flume. The 1907 Fresno County Atlas shows the route of the system. A major engineering work, the 62 -mile long v-shaped flume carried logs from a 4500 -foot elevation to the mill and railroad at Sanger at a 300 -foot elevation. The flume operated from 1890 to 1923.

The Hazelton Ranch is mentioned in the 1882 County history as a 3,800 -acre ranch on the Kings River near the community of Centerville Wallace W. Elliott \& Company 1882: 185). The lands of the ranch were considered to have plenty of water and timber. The 1907 County Historical Atlas shows the entirety of section 24 containing the Project Area to be owned by William Hazelton.

For the history of the current facility, according to the Kings River Packing's website:
Kings River Packing, Inc. is a family-owned business located in the San Joaquin Valley. Our company is proud to be a grower, shipper, and packer of quality oranges and lemons for more than 25 years.

Kings River Packing, Inc. was started by Douglas Hazelton in 1977. Mr. Hazelton is a fifthgeneration farmer here in Sanger, CA. His great-great grandfather, William Hazelton, came to this area in 1853 and in 1866 returned home from a cattle trip with his saddle bags full of oranges. His wife planted the orange seeds and two trees grew. These were the first orange trees planted in Fresno County. In 1873, William started farming citrus and in 1876 recorded four bearing orange trees. The farming continued to grow and in 1961 Douglas' father, Ed, planted 5,450 citrus trees. Douglas continued the farming operation and with the help of his family he now farms over 600 acres of citrus. In 1977, Mr. Hazelton identified the need for a quality independent shipper and packer in the Sanger area. With the help of his daughters and sons-in-law, Douglas began packing his own fruit. Kings River Packing, Inc. was founded and the Hazelton family continues to pack high quality citrus.

Kings River Packing, Inc. is owned and operated by Mr. Hazelton and his two sons-in-law, David Hines and Keith Gardner. Both David and Keith are lifetime residents of Sanger, CA. They are also owners and operators of the farming entity in addition to farming their own citrus properties.

RESEARCH

A record search was conducted for the Project Area and a 0.125 -mile radius around the Project Area at the Southern San Joaquin Valley Archaeological Information Center of the California Historical Resources Information System on December 15, 2017 (RS\#17-551, Appendix 2).

A two-acre portion of the Project Area was surveyed with negative results in 1997 by Brian Wickstrom. There are no sites recorded within the Project Area. The Enterprise Canal, to the south of the Project Area, has been recorded as P-10-007030.

FIELD ASSESSMENT

Mike Lawson completed a field survey of the 28 acres comprising the Project Area on January 8, 2017 (Figure 3). Much of the Project Area is covered by buildings or paving. Survey was then limited primarily to the orchard areas.

The historic canal lies far enough away from the area of potential effect that it is not a concern for the study.

Figure 3

The only visible soil on the property is along the Kings River for about two hundred feet at the north end of Project Area, and within the orchard blocks and their perimeter dirt roadways. The orchard sections have citrus trees of various species, with ample space between them and good weed control, allowing excellent visibility. It is unclear whether the orchards have been dug down slightly and leveled, or if the land under the packing buildings in-between them was filled and leveled, resulting in the northern orchard blocks being lower.

The soil at the bank of the River is sandy and has embedded cobbles visible, but no large boulders or other features which could have been used by local tribes for food processing. Likewise, no historic features or course modifications were visible along the steep bank.

The soils within the orchards is comprised of dark brown loam, somewhat sandy, with occasional rounded pebbles and small river cobbles. Close attention was given to changes in soil color or constituents, but none were noticed throughout the orchards.

Five to ten meter transects were used during the survey to allow sufficient inspection, with occasional closer observation in areas where mechanical or animal disturbance was evident.

No cultural resources were observed during this survey.

RECOMMENDATIONS

Although no prehistoric sites were found during the survey, there is a slight possibility that a site may exist and be totally obscured by vegetation, fill, or other historic activities, leaving no surface evidence. Should artifacts or unusual amounts of stone, bone, or shell be uncovered during construction activities, an archeologist should be consulted for on-the-spot evaluation of the finding. If the bone appears to be human, state law requires that the Fresno County Coroner be contacted. If the Coroner determines that the bone is human and is most likely Native American in origin, he must contact the Native American Heritage Commission (916-322-7791).

REFERENCES

Baumhoff, Martin A.
1963 Ecological Determinants of Aboriginal California Populations. University of California Publications in American Archaeology and Ethnology 49(2): 155-236. Berkeley.

Baumhoff, Martin A., and David Olmsted
1963 Radiocarbon support for Glottochronology. American Anthropologist 65(2): 278284.

1964 Notes on Palaihnihan culture history: glottochronology and archaeology. Studies in California linguistics, edited by William Bright, pp. 1-12. University of California Publications in Linguistics 34. Berkeley.

Beardsley, Richard K.
1954 Temporal and Areal Relationships in Central California Archeology (parts 1 and 2). University of California Archaeological Survey Reports 24, 25. Berkeley.

Beck, Warren A. and Ynez D. Haase
1974 Historical Atlas of California. University of Oklahoma Press, Norman.
City of Clovis
1962 The History of Clovis: 50 Years of Progress. Published booklet, on file, California Room of the California State Library, Sacramento.

Clough, Charles W. and William B. Secrest, Jr.
1984 Fresno County-The Pioneer Years: From the Beginning to 1900. Panorama West Books, Fresno.

Clovis Centennial Book Committee
2011 Images of America: Clovis. Arcadia Publishing.
Cook, Sherburne F.
1960 Colonial expeditions to the interior of California: Central Valley 1800-1820. University of California Anthropological Records 16(6): 239-292. Berkeley.

1955a The Aboriginal Populations of the San Joaquin Valley, California. University of California Press Anthropological Records 16(2). Berkeley.

1955b The epidemic of 1830-33 in California and Oregon. University of California Publications in American Archaeology and Ethnology 43(3): 303-326. Berkeley.

Davis, James T.
1961 Trade Routes and Economic Exchange among the Indians of California. University of California Archaeological Survey Reports 54:1-71. Berkeley.

Elliott, Wallace W.
1882 History of Fresno County, California with Illustrations. Wallace W. Elliott \& Company, Publishers, San Francisco.

Fickewirth, Alvin A.
1992 California Railroads. Golden West Books. San Marino, CA.
Fredrickson, David A.
1967 Additional C-14 dates for water resources investigations at Buena Vista Lake. Society for California Archaeology Newsletter 1(5).

Frickstad, Walter
1955 A Century of California Post Offices. Pacific Rotapress Printing Company, Oakland.

Fredrickson, David A., and J. Grossman
1966 Radiocarbon Dating of an Early Site at Buena Vista Lake, California. Paper read before the annual meeting of the Society for American Archaeology, Reno.

1977 A San Dieguito Component at Buena Vista Lake, California. The Journal of California Anthropology 4(2): 173-190.

Fresno Republican newspaper
1897 Imperial Fresno. Facsimile reproduction, published 1979 by the Fresno City and County Historical Society.

Gates, Paul W.
1991 Land and Law in California: Essays on Land Policies. Iowa State University Press, Ames.

Gifford, E. W., and W. E. Schenck
1926 Archaeology of the Southern San Joaquin Valley, California. University of California Publications in American Archaeology and Ethnology, Vol. 23, No. 1.

Gudde, Erwin
1969 California Place Names. University of California Press, Berkeley.
Hayes, Derek
2007 Historical Atlas of California. University of California Press, Berkeley.

Hofsommer, Don L.
1986 The Southern Pacific, 1901-1985. Texas A \&M University Press, College Station.
Hoover, Mildred, Hero E. Rensch, Ethel G. Rensch (William N. Abeloe, editor)
1970 Historic Spots in California (Third Edition). Stanford University Press, Stanford.
Kroeber, Alfred L.
1925 Handbook of the Indians of California. Bureau of American Ethnology Bulletin 78. Washington, D.C.

Latta, Franklin F.
1949 Handbook of the Yokuts Indians. Bear State Books, Oildale, California.
Lewis Publishing Company
1892 A Memorial and Biographical History of the Counties of Fresno, Tulare and Kern. California. Chicago: The Lewis Publishing Company.

Lillard, Jeremiah B., Robert F. Heizer and Franklin Fenenga
1939 An Introduction to the Archaeology of Central California. Sacramento Junior College, Department of Anthropology Bulletin 2. Sacramento.

Lillard, Jeremiah B. and William K. Purves
1936 The Archeology of the Deer Creek-Cosumnes Area, Sacramento County, California. Sacramento Junior College, Department of Anthropology Bulletin 1.

Meighan, Clement W.
1959 California Cultures and the Concept of an Archaic Stage. American Antiquity 24(3): 289-318.

Moratto, Michael J.
1984 California Archaeology. Academic Press, Inc., New York.
Riddell, Francis A. and William H. Olsen
1969 An Early Man Site in the San Joaquin Valley, California. American Antiquity 34(2): 121-131. Washington, D.C.

Rogers, Malcolm J.
1939 Early Lithic Industries of the Lower Basin of the Colorado River and Adjacent Desert Areas. San Diego Museum Papers 3. San Diego.

Schenck, W. Egbert and Elmer Dawson
1929 Archaeology of the Northern San Joaquin Valley. University of California Publications in American Archaeology and Ethnology 25(4): 289-413. Berkeley.

Smith, Wallace
1960 Garden of the Sun. Eighth edition. Privately printed.
Thompson, Thomas H.
1891 Official Historical Atlas Map of Fresno County. Thomas H. Thompson, Tulare, California.

Vandor, Paul E.
1919 History of Fresno County, California. Historic Record Company, Los Angeles.
Wedel, Waldo R.
1941 Archaeological Investigations at Buena Vista Lake, Kern County, California. Bureau of American Ethnology Bulletin 130. Washington, D.C.

Wickstrom, Brian
1997 A Cultural Resources Survey of the Two Acre Kings River Packing Plant Parcel on Trimmer Springs Road, Eastern Fresno County, California. Ms. on file, South San Joaquin Valley Information Center (FR-00018).

Winchell, Lilbourne Alsip
1933 History of Fresno County and the San Joaquin Valley. Fresno: A. H. Cawston. Publisher.

APPENDIX 1

Resumes

PEAK \& ASSOCIATES, INC. RESUME

MELINDA A. PEAK
January 2018
Senior Historian/Archeologist
3941 Park Drive, Suite 20 \#329
El Dorado Hills, CA 95762
(916) 939-2405

PROFESSIONAL EXPERIENCE

Ms. Peak has served as the principal investigator on a wide range of prehistoric and historic excavations throughout California. She has directed laboratory analyses of archeological materials, including the historic period. She has also conducted a wide variety of cultural resource assessments in California, including documentary research, field survey, Native American consultation and report preparation.

In addition, Ms. Peak has developed a second field of expertise in applied history, specializing in sitespecific research for historic period resources. She is a registered professional historian and has completed a number of historical research projects for a wide variety of site types.

Through her education and experience, Ms. Peak meets the Secretary of Interior Standards for historian, architectural historian, prehistoric archeologist and historic archeologist.

EDUCATION

M.A. - History - California State University, Sacramento, 1989

Thesis: The Bellevue Mine: A Historical Resources Management Site Study in Plumas and Sierra Counties, California
B.A. - Anthropology - University of California, Berkeley

PROJECTS

In recent years, Ms. Peak has led the team completing the cultural resource sections for General Plan and General Plan Updates, for a number of cities/neighborhoods including Campbell, Milpitas, Yountville, Manteca, The Springs, Sebastopol, Martinez, Brentwood, Colusa County and Foster City. Older General Plan efforts include Wheatland, Rocklin, Sheridan, Granite Bay and South Sutter County.

In recent months, Ms. Peak has completed a number of determinations of eligibility and effect documents in coordination with the Corps of Engineers for projects requiring federal permits, assessing the eligibility of a number of sites for the National Register of Historic Places.

She has also completed historical research projects on a wide variety of topics for a number of projects including the development of a winery in a ranch in Folsom, commercial buildings in the City of

Davis, a lumber mill in Clovis, older farmhouses dating to the 1860s, an early roadhouse, bridges, canals, former small town site, and a section of an electric railway line.

In recent years, Ms. Peak has prepared a number of cultural resource overviews and predictive models for blocks of land proposed for future development for general and specific plans. She has been able to direct a number of surveys of these areas, allowing the model to be tested.

Ms. Peak completed the cultural resource research and contributed to the text prepared for the DeSabla-Centerville PAD for the initial stage of the FERC relicensing. She also served cultural resource project manager for the FERC relicensing of the Beardsley-Donnells Project. For the South Feather Power Project and the Woodleaf-Palermo and Sly Creek Transmission Lines, her team completing the technical work for the project.

She served as principal investigator for the multi-phase Twelve Bridges Golf Club project in Placer County. She served as liaison with the various agencies, helped prepare the historic properties treatment plan, managed the various phases of test and data recovery excavations, and completed the final report on the analysis of the test phase excavations of a number of prehistoric sites. She is currently involved as the principal investigator for the Clover Valley Lakes project adjacent to Twelve Bridges in the City of Rocklin, coordinating contacts with Native Americans, the Corps of Engineers and the Office of Historic Preservation.

Ms. Peak has served as project manager for a number of major survey and excavation projects in recent years, including the many surveys and site definition excavations for the 172-mile-long Pacific Pipeline proposed for construction in Santa Barbara, Ventura and Los Angeles counties. She also completed an archival study in the City of Los Angeles for the project, and served as principal investigator for a major coaxial cable removal project for AT\&T.

Additionally, she completed a number of small surveys, served as a construction monitor at several urban sites, and conducted emergency recovery excavations for sites found during monitoring. She has directed the excavations of several historic complexes in Sacramento, Placer and El Dorado Counties.

Ms. Peak is the author of a chapter and two sections of a published history (1999) of Sacramento County, Sacramento: Gold Rush Legacy, Metropolitan Legacy. She served as the consultant for a children's book on California, published by Capstone Press in 2003 in the land of Liberty series.

Michael D Lawson

Archaeologist

Sacramento CA

Resume

> 22 years of experience working in CRM, volunteer, and academic settings in California historic, proto historic, and prehistoric archaeology.
$>$ Expertise in pedestrian survey, excavation, feature (including burial) exposure, laboratory techniques, research. Field positions include Crew Chief, Lead technician.
> Master flintnapper, focusing for 20 years on California/ Great Basin cutting tool and projectile forms and production techniques, as well as stone source research. Proto historic glass use for projectile points also a major focus. Research done in person at Phoebe Hurst Museum, Berkeley.
>18 years of experience in traditional blacksmithing with focus on mid to late $19^{\text {th }}$ century coal/charcoal forge techniques. Special interest in analysis of historic artifacts.
>15 years independent study of late $19^{\text {th }}$ century to mid- $20^{\text {th }}$ century farm and ranch equipment.
$>$ Extensive independent study of historic era household, industrial and military items.
> Independent study of Yahi/Southern Yana occupation and survival strategy in the Mt. Lassen foothills, including field trips and research. Discoveries contributed to 3 publications.
$>$ Current independent research project focus on Yahi adaptation strategy during time of hiding from 1870 to 1911 in Deer, Antelope and Mill Creek Canyons.

Education

- B.A. Anthropology with focus on archaeology. California State University Sacramento.
- A.A. General Education, lower division completed in Anthropology.

Field experience

Survey, excavation, photography conducted in 46 California and 3 Nevada Counties over 20 years.

Notable Historic archaeology projects include Virginia Town excavation of Gold Rush Era Chinese mining camp; test excavation and data recovery at stage stop on Green Valley Rd, Placer County; monitoring and collection of burial material at historic Kilgore cemetery, Rancho Cordova, Car; Monitoring, data recovery, photography, and artifact cataloguing for Sutter Street Revitalization Project, Phase One, Historic Folsom, CA; Monitoring, test excavation, data recovery at The Presidio of San Francisco, CA; Monitoring for 230 kV line installation for PG\&E in historic San Francisco, Ca. to name just a few.

Prehistoric and Proto historic site project involvement highlights include survey, monitoring, excavation Twelve Bridges Golf Course, Lincoln, CA; survey, monitoring, excavation Clover Valley Lakes, Rocklin, CA;; survey of Diamond Valley, Alpine County, CA; Survey, excavation, burial care and monitoring of Feather River Levee Setback Project, Sutter County, CA; monitoring, excavation, burial care, Feather River West Levee Project, Yuba County, CA; survey, monitoring, excavation, and burial care Alamo Creek Detention Basin Project, Solano County, CA; monitoring, excavation, burial care, BART extension Project, San Jose, Milpitas, CA; Survey, excavation San Clemente Island, US Channel Islands, Los Angeles County, CA.

Additional Skills

Mike is known for extensive knowledge of historic and prehistoric artifacts and regularly instructs new undergraduates as well as graduates on artifact identification, use, manufacture and commonality.

Mike is also known for his willingness to share and teach his expertise in field techniques from surveying to excavation and feature work.

APPENDIX 2

Record Search

California

Historical
 Resources Information System

Fresno
Kern
Kings
Madera
Tulare

Southern San Joaquin Valley Information Center

12／15／2017

Robert A．Gerry
Peak \＆Associates，Inc．
3941 Park Drive，Suite 20－329
El Dorado Hills，CA 95762

Re：Kings River Packing
Records Search File No．：17－551
The Southern San Joaquin Valley Information Center received your record search request for the project area referenced above，located on the Piedra USGS 7．5＇s quads．The following reflects the results of the records search for the project area and the 0.125 mile radius：

As indicated on the data request form，the locations of resources and reports are provided in the following format：\boxtimes custom GIS maps \square shapefiles \square hand－drawn maps

Resources within project area：	None
Resources within 0．125 mile radius：	P－10－007030
Reports within project area：	FR－00018
Reports within 0．125 mile radius：	None

Resource Database Printout（list）：
Resource Database Printout（details）
Resource Digital Database Records：

Report Database Printout（list）：

Report Database Printout（details）：
Report Digital Database Records：
Resource Record Copies：
Report Copies：enclosednot requestednothing listedenclosed \mathbb{Q} not requestednothing listedenclosed \mathbb{V} not requestednothing listed\boxtimes enclosed \square not requested \square nothing listedenclosed $\mathbb{\Delta}$ not requested \square nothing listedenclosed $\mathbb{\Delta}$ not requested \square nothing listed
区 enclosed \square not requested \square nothing listedenclosed \boxtimes not requestednothing listedenclosednot requested $⿴ 囗 十$ nothing listed

Archaeological Determinations of Eligibility：enclosednot requested $\boldsymbol{\otimes}$ nothing listed

CA Inventory of Historic Resources（1976）：enclosed $⿴ 囗 十$ not requestednothing listed

Shipwreck Inventory:

Not available at SSJVIC; please see
http://www.slc.ca.gov/Info/Shipwrecks.html

Soil Survey Maps:
Not available at SSJVIC; please see
http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx

Please forward a copy of any resulting reports from this project to the office as soon as possible. Due to the sensitive nature of archaeological site location data, we ask that you do not include resource location maps and resource location descriptions in your report if the report is for public distribution. If you have any questions regarding the results presented herein, please contact the office at the phone number listed above.

The provision of CHRIS Data via this records search response does not in any way constitute public disclosure of records otherwise exempt from disclosure under the California Public Records Act or any other law, including, but not limited to, records related to archeological site information maintained by or on behalf of, or in the possession of, the State of California, Department of Parks and Recreation, State Historic Preservation Officer, Office of Historic Preservation, or the State Historical Resources Commission.

Due to processing delays and other factors, not all of the historical resource reports and resource records that have been submitted to the Office of Historic Preservation are available via this records search. Additional information may be available through the federal, state, and local agencies that produced or paid for historical resource management work in the search area. Additionally, Native American tribes have historical resource information not in the CHRIS Inventory, and you should contact the California Native American Heritage Commission for information on local/regional tribal contacts.

Should you require any additional information for the above referenced project, reference the record search number listed above when making inquiries. Invoices for Information Center services will be sent under separate cover from the California State University, Bakersfield Accounting Office.

Thank you for using the California Historical Resources Information System (CHRIS).

Coordinator

Report List
SSJVIC Record Search 17-551
Report No. Other IDs
FR-00018 NADB-R-1141023 1997 Wickstrom, Brian
$\begin{array}{ll}\text { A Cultural Resources Survey of the Two Acre } & \text { California State University, } \\ \text { Kings River Packing Plant Parcel on Trimmer } & \text { Fresno }\end{array}$ Springs Road, Eastern Fresno County,
California
Resources
Affiliation

1234 O Street
Fresno, California 93721
PHONE (559) 449-4500
FAX (559) 449-4515

Transportation Impact Study for

Kings River Packing Company Expansion
 Sanger, California

CUP 3597
Prepared For:
Kings River Packing Company
21095 E. Trimmer Springs Road
Sanger, CA 93657

Prepared by:

David Schwegel, PE 67757, TE 2249
Kheng Vang, PE 63824, TE 2674

Date:

May 9, 2018
Job No.:
17-205

This Transportation Impact Study has been prepared under the direction of David Schwegel. Mr. Schwegel attests to the technical information contained therein and has judged the qualifications of recommendations, conclusions, and decisions are based on County of Fresno guidelines, general engineering standards, and California/Federal laws.

Table of Contents

1.0 INTRODUCTION 1
Figure 1: Regional and Vicinity Maps 1
1.1 Site Description 1
1.2 SCOPE 1
1.3 Project Description 2
Figure 2: Site Plan 2
1.4 Phase One Description 2
1.5 Full Build-out Description 2
2.0 METHODOLOGY 3
2.1 Intersection Capacity Analysis 3
Table 1: Capacity at Un-Signalized Intersections 3
Table 2: Capacity at Signalized Intersections 4
2.2 Roadway Capacity Analysis 4
Table 3: Service Flow Rates along Roadway Segments. 5
2.3 Roadway Structural Analysis 5
3.0 EXISTING CONDITIONS 6
3.1 Setting 6
Figure 3: Existing Setting 6
Table 4: Existing Setting: Key Roadways 6
3.2 Volumes 6
Figure 4: Existing Volumes 6
3.3 Intersection Capacity 7
Table 5: Existing Intersection Conditions 7
3.4 Roadway Capacity 7
Table 6: Existing Roadway Capacity Conditions 8
4.0 PHASE ONE IMPACT ANALYSIS 9
4.1 Setting 9
Table 7: Near-Term Setting: Key Roadways 9
Figure 5: Near-Term Setting 9
4.2 Volumes without Project. 10
Figure 6: Near-Term Volumes. 10
4.3 Trip Generation. 10
Table 8: Trip Generation: Phase One 10
4.3.1 Combined Trucks and Employees 11
4.3.2 Trucks Only 11
4.3.3 Employees Only. 12
4.4 Trip Distribution 12
4.5 TRIP Assignment. 13
Figure 7: Phase One Trip Assignment 13
4.6 Volumes with Phase One 13
Figure 8: Near-Term Plus Phase One Volumes 13
4.7 IMPACTS ON Intersection Operations 13
Table 9: Phase One Impact on Intersection Operations 14
4.8 Impacts on Roadway Segment Operations 14
Table 10: Phase One Impact on Roadway Segment Operations 14
5.0 FULL BUILD-OUT IMPACT ANALYSIS 15
5.1 Setting 15
5.2 Volumes without Project. 15
Figure 9: Cumulative Volumes. 15
5.3 Trip Generation. 15
Table 11: Trip Generation: Full Build-out 16
5.3.1 Combined Trucks and Employees. 16
5.3.2 Trucks Only 16
5.3.3 Employees Only 17
5.4 TRIP DISTRIBUTION. 17
5.5 TRIP AsSIGNMENT. 18
Figure 10: Full Build-out Trip Assignment 18
5.6 Volumes with Full Build-out. 18
Figure 11: Cumulative Plus Full Build-out Volumes 18
5.7 Impacts on Intersection Operations 18
Table 12: Impact of Full Build-out on Intersection Operations 18
5.8 Impacts on Roadway Segment Operations 18
Table 13: Impact of Full Build-out on Roadway Segment Operations. 19
5.9 Impacts on Roadway Segment Structural Sections 19
Table 14: Project Truck Trips (AADT) for TI Analysis 20
Table 15: TI Results 20
6.0 FINDINGS AND RECOMMENDATIONS 21
6.1 FINDINGS 21
6.1.1 Existing Conditions 21
Table 16: Summary of Existing Intersection Conditions 21
Table 17: Summary of Existing Roadway Capacity Conditions 21
6.1.2 Phase One Impacts 21
Table 18: Summary of Phase One Impacts on Intersection Operations 22
Table 19: Summary of Phase One Impacts on Roadway Segment Operations 22
6.1.3 Full Build-out Impacts. 22
Table 20: Summary of Impacts of Full Build-out on Intersection Operations 22
Table 21: Summary of Impacts of Full Build-out on Roadway Segment Operations. 23
Table 22: Trip Generation for TI Analysis 23
Table 23: TI Results. 23
6.2 Recommendations 24
APPENDIX A: FACILITY PRODUCTION AND DAILY TRUCK TRIP GENERATION 25
APPENDIX B: TOTAL, TRUCK, AND EMPLOYEE TRIP GENERATION, DISTRIBUTION, AND ASSIGNMENT. 26
APPENDIX C: ROADWAY STRUCTURAL INTEGRITY (TRAFFIC INDEX) 27
APPENDIX D: ROADWAY SEGMENT CAPACITY 28
APPENDIX E: EXISTING INTERSECTION TURNING MOVEMENTS 29
APPENDIX F: INTERSECTION TURNING MOVEMENT, LOS, AND QUEUING RESULTS 30
APPENDIX G: EXISTING ANALYSIS AM (SYNCHRO) 31
APPENDIX H: EXISTING ANALYSIS PM (SYNCHRO) 32
APPENDIX I: NEAR-TERM ANALYSIS AM (SYNCHRO). 33
APPENDIX J: NEAR-TERM ANALYSIS PM (SYNCHRO). 34
APPENDIX K: NEAR-TERM PLUS PHASE ONE ANALYSIS AM (SYNCHRO) 35
APPENDIX L: NEAR-TERM PLUS PHASE ONE ANALYSIS PM (SYNCHRO)
37
APPENDIX M: CUMULATIVE ANALYSIS AM (SYNCHRO)
38
APPENDIX N: CUMULATIVE ANALYSIS PM (SYNCHRO)
39
APPENDIX P: CUMULATIVE PLUS FULL BUILD-OUT ANALYSIS PM (SYNCHRO) 40

1.0 Introduction

The Kings River Packing Company proposes a two-phase expansion of their existing fruit packing facility at 21083 and 21095 East Trimmer Springs Road in unincorporated Fresno County near Sanger, California. The operation has been in place since 1977 entailing the sorting and packing of oranges, lemons, and other citrus fruits. The expansion project is triggered by an increase in market product demand and growers serviced. Operations entail transporting unpacked citrus fruits from the farms to the facility via inbound field trucks. At the facility, these fruits are stored in refrigeration units and packed on-demand.

A small portion of the unpacked fruits come from adjacent orchards. These particular fruit products are transported to Kings River Packing Company via dirt roads, and therefore, do not impact the Fresno County roadway network.

Once packing is completed at the facility, the packed citrus fruit products are transported to distribution centers via outbound shipping trucks.

Figure 1: Regional and Vicinity Maps identify the project's location within the State of California and the Southwest Fresno County vicinity. The project is located approximately 25 miles northeast of downtown Fresno.

1.1 Site Description

The existing facility and expansion is located on a 28.83 -acre site at 21083 and 21095 E. Trimmer Springs Road in unincorporated Fresno County near Sanger. The existing land use is Agricultural and the existing zoning is AE-20. Operations are fruit packing and storage. The Kings River and Fresno Irrigation District Canal border to the east. Agricultural (citrus fruit orchards) lands border to the north, south, and west.

1.2 Scope

As approved during the scoping meeting on Wednesday, December 6, intersection operations were evaluated at (1) SR 180/Rio Vista, (2) SR 180/Reed, (3) SR 180/Oliver, and (4) Trimmer Springs Road/Site Access. Due to the closure and reconstruction of Belmont between Academy and Trimmer Springs and associated detouring operations, it was not practical to obtain counts at either Belmont/Oliver or SR 180/Oliver. This situation was noted during a field investigation conducted during the afternoon of Thursday, December 14, 2017. It was practical to derive counts at SR 180/Oliver from the other SR 180 counts and the Fresno COG travel demand modeling data. Existing intersection turning movements are contained within Appendix E.

Also, as approved during the same scoping meeting, roadway operations and structural conditions were evaluated at (A) Belmont west of Academy and (B) Trimmer Springs south of the site. Roadway capacity calculations are in Appendix D. Structural (Traffic Index) calculations are in Appendix C.

Finally, as approved during the same scoping meeting, the above referenced intersection

$\frac{\text { VICINITY MAP }}{\text { NOT TO SCALE }}$

EXHIBIT	PROJECT NAME:	
KINGS RIVER		
DESCRIPTION: REGIONAL AND VICINITY MAPS	PACKING COMPANY	

operational analyses were conducted under the following scenarios: (1) Existing, (2) Near-Term, (3) Near-Term Plus Phase One, (4) Cumulative, and (5) Cumulative Plus Full Build-out. Results of these analyses are summarized in Appendix F. Synchro data sheets are in Appendices G to P.

1.3 Project Description

The project entails a two-phase expansion of the existing facility with a maximum of 300 employees during peak season (January to April) with peak daily production typically being around three times the average daily production. Appendix A describes the methodology for projecting the number of employees in terms of bin production per employee. According to the analysis, it takes approximately 150 employees to meet the existing maximum daily production of 2,848 bins. It would take approximately 195 employees to meet the target maximum daily production of 3,500 bins under Phase One. It would take approximately 300 employees to meet the target maximum daily production of 5,000 bins under Full Build-out. The facility would operate six days a week and 24 hours a day with key concentrations of employees over two shifts: (1) 6:00 am to $3: 00 \mathrm{pm}$, and (2) 3:00 pm to $12: 00 \mathrm{am}$. A major element of the two-phase expansion is the inclusion of automated equipment for boosted efficiency resulting in no net increase in liquid waste. Three accesses would be provided onto Trimmer Springs Road including one to the north, one in the center, and one to the south. To ensure a conservative analysis, all volumes were combined into a single access.

Figure 2: Site Plan shows the layout of the Phase One and Full Build-out elements relative to existing conditions.

1.4 Phase One Description

Phase One would add up to 45 additional employees for a total of 195 employees (including existing) to achieve the target maximum daily production of 3,500 bins per day. This phase would entail the construction of a 77,500 -square-foot building (identified as Building E on the site plan) to the north containing a fruit cold storage facility and a shipping office. This phase will also entail the performance of site grading work and the construction of a new loading dock.

1.5 Full Build-out Description

Full Build-out (including existing and Phase One) would add up to 150 employees to the existing operation. This would bring the total number of employees up to 300 during peak season to achieve a maximum daily production of 5,000 bins per day. This phase would entail the construction of a 173,000 -square-foot building to the south (identified as Building F) for packing operations and a new main office. Parking facilities at full build-out would include 374 standard spaces, 8 accessible spaces, and 40 truck spaces.

2.0 Methodology

The scope entailed conducting capacity evaluations at four intersections, and capacity and structural integrity (Traffic Index) evaluations along two roadway segments.

2.1 Intersection Capacity Analysis

The analysis entailed the evaluation of capacity at three un-signalized intersections and one signalized intersection using Level of Service (LOS) based on Highway Capacity Manual 2010 methodologies.

Table 1 defines the intersection capacity evaluation criteria at un-signalized intersections by LOS designation as a function of delay. This table also provides a narrative description of each designation. This methodology applies to all four study intersections under the Existing Conditions scenario; and SR 180 at (1) Rio Vista and (3) Oliver, and Trimmer Springs at the Site Access (4) under the remaining scenarios.

Table 1: Capacity at Un-Signalized Intersections

Designation	Delay (seconds per vehicle)		
A	$0-10$	Long, frequent gaps	
B	$10-15$	Shorter, less frequent gaps, no more than 1 vehicle in queue	
C	$15-25$	Less frequent gaps, 2 vehicles in queue	
D	$25-35$	Less frequent gaps, 3 vehicles in queue	
E	$35-50$	Long frequent gaps, 3 or more vehicles in queue	
F	Le+	Excessive delays waiting for suitable gaps, longer queues	
Source: Transportation Research Board, Highway Capacity Manual 2010			

Table 2 defines the intersection capacity evaluation criteria at signalized intersections by LOS designation as a function of delay. This table also provides a narrative description of each designation. This methodology applies to SR 180 at Reed (2) under the Near-Term with Phase One, Cumulative, and Cumulative with Full Build-out scenarios.

Table 2: Capacity at Signalized Intersections

Designation	Delay (seconds per vehicle)		
A	$0-10$	Some slowing on green, but most vehicles do not stop Description	
B	$10-20$	Some vehicles stop, but most do not	
C	$20-35$	More vehicles stop, but many still pass through without stopping	
D	$35-55$	Most vehicles stop	
E	$55-80$	Almost all vehicles stop, but are able to clear the intersection within one cycle	
F	All vehicles stop, and some may not be able to clear the intersection within one cycle		
Source: Transportation Research Board, Highway Capacity Manual 2010			

According to the Draft Fresno County Traffic Impact Study Guidelines (2014), an increase in delay of 5 seconds or more for the overall intersection is considered significant, and the Fresno County Level of Service Standard is "C" or better on County Roadways. This applies to the Site Access intersection.

According to the Caltrans Guide for the Preparation of Traffic Impact Studies (2002), the Level of Service Standard is "D" or better on the State Highway System. This applies to the three SR 180 intersections.

2.2 Roadway Capacity Analysis

The analysis entailed the evaluation of capacity along two segments of the Fresno County Road system based on Florida DOT and Caltrans methodologies.

Table 3 defines the capacity evaluation criteria along two roadway segments based on LOS as a function of Annual Average Daily Traffic (AADT) from the Florida LOS Tables. This methodology applies to capacity evaluations at Belmont west of Oliver (A) and Trimmer Springs south of the Site (B). While Belmont Avenue is signalized, it is not on the State Highway System. Therefore, the upper limits of the service flow rates along Belmont were reduced by 10 percent as directed by Florida DOT. The upper limits of the service flow rates along Trimmer Springs Road are based on uninterrupted flow highways with no reduction factors as directed by Florida DOT.

Table 3: Service Flow Rates along Roadway Segments

Designation	AADT (vehicles/day) Belmont Ave (1)	AADT (vehicles/day) Trimmer Springs Rd (2)
A		
B		4,700
C	12,960	8,400
D	14,580	14,300
E		28,600
F		

AADT: Annual Average Daily Traffic
Source: Florida DOT Generalized Service Volume Tables
1: Table 2: Generalized Annual Average Daily Volumes for Florida's Transitioning Areas for State Signalized Arterials Class I ($>40 \mathrm{mph}$)
2: Table 3: Generalized Annual Average Daily Volumes for Florida's Rural Undeveloped Areas for Uninterrupted Flow Highways

According to the Draft Fresno County Traffic Impact Study Guidelines (2014), the Fresno County Level of Service Standard is "C" or better on County Roadways.

2.3 Roadway Structural Analysis

Roadway structural integrity is evaluated based on volumes by vehicle classification. The volumes are multiplied by the constants specific to the class of vehicle as indicated in Table 613.3A of the Caltrans Highway Design Manual. The summation of the volumes multiplied by the constants yields the Equivalent Single Axle Loads (ESALs). These ESAL values are then inserted into a formula to calculate the Traffic Index (TI). This TI methodology applies to structural integrity evaluations at Belmont west of Academy (A) and Trimmer Springs south of the Site (B).

According to the Draft Fresno County Traffic Impact Study Guidelines (2014), an increase in TI of 0.5 or more is considered significant.

3.0 Existing Conditions

The existing transportation system and topographical conditions were evaluated by studying satellite imagery and conducting a low-level field investigation of the site and the study area during the afternoon of Thursday, December 14, 2017.

3.1 Setting

Figure 3: Existing Setting defines the existing roadways, lane configurations, and intersection geometrics including taper lengths and storage lengths.

Table 4 describes the key roadways within the existing setting.
Table 4: Existing Setting: Key Roadways

Roadway Divided or Un-Divided	Lanes	Posted Speed	Functional Classification	
SR 180 w/o Oliver	Divided	4	65	Expressway
SR 180 e/o Oliver	Un-Divided	2	55	Super Arterial
Academy	Un-Divided	4	55	Arterial
Belmont	Un-Divided	2	55	Arterial
Oliver	Un-Divided	2	45	Arterial
Reed	Un-Divided	2	55	Rural Arterial
Trimmer Springs	Un-Divided	2	45	Rural Arterial
Rio Vista	Un-Divided	2	45	Collector

Source: Fresno County General Plan Policy Document (2000), Transportation \& Circulation Element, Figures TR-1a to TR-1c

3.2 Volumes

Figure 4: Existing Volumes shows the existing intersection turning movement volumes that serve as the basis for the intersection operational analysis. For analysis purposes, 1 truck is equivalent to 2.5 passenger cars, as directed by Fresno County for trucks larger than Class 3. These volumes are expressed in Passenger Car Equivalents (PCE's). These PCE's were input into Synchro to conduct the intersection operational analyses. The volumes for (1) SR 180/Rio Vista and (2) SR 180/Reed were calculated from turning movement counts collected by Metro Traffic Data on Thursday, December 7, 2017 during the AM and PM peak hours. The volumes for (3) SR 180/Oliver were derived from the counts and travel demand modeling data provided by Fresno COG as indicated in Appendix E. The volumes for (4) Trimmer Springs/Site Access were derived from: (a) 24-hour segment counts collected by Metro Traffic Data on Thursday, December 7, (b) existing trip generation calculations based on ITE Trip Generation rates, and (c) travel demand modeling data provided by Fresno COG. Appendix F explains the calculation of the PCE's and the projection of near-term and cumulative traffic volumes from the Fresno COG Travel Demand Modeling data.

3.3 Intersection Capacity

Appendices G (AM) and H (PM) contain the calculation reports for the evaluation of capacity at the un-signalized intersections based on the Highway Capacity Manual Methodology described in Section 2.

Table 5 shows the existing intersection conditions at the four study intersections. Reported results are for the worst-case movement. Peak Hour Factor is for actual intersection counts. For the SR 180 Intersections (1-3), Heavy Vehicle compositions are 4% for AM and 3\% for PM. For the Site Access/Trimmer Springs Intersection (4), the Heavy Vehicle composition is 12% for both AM and PM. These percentages are based on actual counts. Intersection evaluations are based on the peak hour during the peak season of operation. The Operational analysis was conducted using Synchro 9 based on Highway Capacity Manual 2010 methodologies.

Table 5: Existing Intersection Conditions

	Existing	
	AM	PM
1: SR 180/Rio Vista	31.5 D	41.3 E
2: SR 180/Reed	21.1 C	423.4 F
3: SR 180/Oliver	234.8 F	418.1 F
4: Trimmer Springs/Site	10.2 B	10.0 B

Source: Trafficware, Synchro 9
Source: Transportation Research Board, Highway Capacity Manual 2010

3.4 Roadway Capacity

Appendix D contains the calculations for the evaluation of capacity along the two roadway segments. For analysis purposes, it was assumed that the segment counts obtained from Metro Traffic Data are representative of the traffic volumes along the entire segment. Peak Hour Factors are based on actual intersection counts.

Table 6 shows the existing operational conditions along roadway segments in terms of roadway capacity (service volume in vehicles per day). The roadway capacity calculations are based on standard 24-hour counts with reported values in Passenger Car Equivalents (PCE's) with 1 truck taken as the equivalent of 2.5 passenger cars as directed by Fresno County. These roadway capacity evaluations are based on the Average Annual Daily Traffic (AADT) as directed by Florida DOT.

Kings River Packing Company Expansion

Table 6: Existing Roadway Capacity Conditions

Intersection	LOS
A: Belmont w/o Academy	$1,525 \mathrm{~B}$
B: Trimmer Springs s/o Site	$1,530 \mathrm{~B}$

Source: Florida DOT Generalized Service Volume Tables
A: Table 2: Generalized Annual Average Daily Volumes for Florida's Transitioning Areas for State Signalized Arterials Class I ($>40 \mathrm{mph}$)
B: Table 3: Generalized Annual Average Daily Volumes for Florida's Rural Undeveloped Areas for Uninterrupted Flow Highways

4.0 Phase One Impact Analysis

The Phase One Impact Analysis was conducted to assess the impact of Phase One of the Project relative to background traffic growth, infrastructure improvements, and development projects. Per the request of Fresno County at the December 6 Scoping Meeting, this analysis reflects the implementation of a 4.55 -mile stretch of improvements along State Route 180 through the three analyzed intersections even through Phase One is likely to be open in advance of these improvements. At the time of this study, these improvements were fully funded and ready for construction. The cover sheet of these improvement plans is provided on the attached CD.

4.1 Setting

Table 7 describes the key roadways in the near-term setting reflecting the State Route 180 improvements. These improvements, approved by Caltrans District 6 on June 22, 2015, entail upgrading the 4.55 -mile stretch of highway from a two-lane arterial to a four-lane divided expressway. Trimmer Springs gets rerouted from its current terminus at Kings Canyon to its new terminus at Oliver just north of SR 180.

Table 7: Near-Term Setting: Key Roadways

Roadway	Divided or Un-Divided	Lanes	Posted Speed	Functional Classification
SR 180 w/o Oliver	Divided	4	65	Expressway
SR 180 e/o Oliver	Divided	4	65	Expressway
Academy	Un-Divided	4	55	Arterial
Belmont	Un-Divided	2	55	Arterial
Oliver	Un-Divided	2	45	Arterial
Reed	Un-Divided	4	55	Arterial
Trimmer Springs	Un-Divided	2	45	Rural Arterial
Rio Vista	Un-Divided	2	45	Collector

Source: Fresno County General Plan Policy Document (2000), Transportation \& Circulation Element, Figures TR-1a to TR-1c
Caltrans District 6, State Route 180 Improvements, June 22, 2015
Figure 5: Near-Term Setting shows roadway characteristics, intersection lane configurations, and geometric conditions (including lengths of acceleration lanes, storage lanes, and tapers) that serve as the basis for the Near-Term analysis. This setting is reflective of improvements entailing converting Kings Canyon to a segmented roadway with cul-de-sacs while rerouting State Route 180 to the north. The specific changes by intersection are as follows:

- SR 180/Rio Vista (1) gets exclusive left-turn lanes on all approaches, and second through lanes and an acceleration lane in the eastbound and westbound directions.
- SR 180/Reed (2) becomes signalized with no pedestrian crossings. Westbound gets dual leftturn lanes and a single right-turn lane. Northbound gets dual through lanes and a single rightturn lane. Southbound gets dual through lanes and a single left-turn lane. For analysis purposes, this intersection would be rotated 90 degrees. The traffic volumes on the figure reflect this rotation. To ensure consistency in the application of growth projections, no

rotation was used in the projection of volumes in Appendix F.
- SR 180/Oliver (3) gets exclusive left-turn lanes on all approaches and second through lanes in the eastbound and westbound directions.

4.2 Volumes without Project

Figure 6: Near-Term Volumes shows the Near-Term without Phase One volumes. These volumes were obtained through linear interpolation of the existing and cumulative volumes calculated from existing counts, and existing and Full Build-out Fresno COG data. These volumes are expressed in Passenger Car Equivalents (PCE's). For analysis purposes, 1 truck (higher than Class 3) is equivalent to 2.5 passenger cars, as directed by Fresno County. As noted above, these volumes in Figure 6 reflect the 90-degree rotation of SR 180/Reed (2). This Fresno COG data is provided on a CD attached to this report.

4.3 Trip Generation

Table 8 shows the results of the Phase One trip generation analysis. This analysis includes three components: (1) Combined Trucks and Employees, (2) Trucks Only, and (3) Employees Only. This trip generation only applies to the Level of Service analysis. A separate trip generation table shows the trip generation that applies to the TI analysis.

Table 8: Trip Generation: Phase One

Description	Employees	Weekday	AM	Peak		PM	Peak	
		Total	Enter	Exit	Total	Enter	Exit	Total
Combined Trucks and Employees								
Directional Split			84\%	16\%		21\%	79\%	
General Light Industrial (110) Rates (1)		3.02	0.37	0.07	0.44	0.09	0.33	0.42
Phase One Trips	195	589	71	14	86	18	64	82
Existing Trips	150	453	56	10	66	14	49	63
Net New Trips (2)	45	136	16	4	20	4	15	19
Trucks for Fruit Packing Operations (3)								
Peak Hour Rates (4)			0.25	0.05	0.15	0.06	0.22	0.14
Phase One Trips	195	276	34	7	41	8	30	38
Existing Trips	150	224	28	5	33	7	24	31
Net New Trips (2)	45	52	6	2	8	1	6	7
Trucks for Servicing the Facility (5)								
Phase One Trips	195	2	0	0	0	0	0	0
Existing Trips	150	2	0	0	0	0	0	0
Net New Trips (2)	45	0	0	0	0	0	0	0
Employees Only (6)								
Phase One Trips	195	313	38	7	45	10	34	44
Existing Trips	150	229	28	5	33	7	25	32
Net New Trips (2)	45	84	10		12	3		12

(1) Source: Institute of Transportation Engineers (ITE), Trip Generation, Ninth Edition (2012) for the General Light Industrial Land Use (ITE Land Use Code 110) as a function of employees
(2) Phase One Trips minus Existing Trips
(3) Inbound Field Trucks and Outbound Shipping Trucks
(4) Rate $=($ Combined Per Hour Trips $) /($ Combined Weekday Trips Per Appendix B)
(5) One Service Truck Making One Inbound and One Outbound Diverted Trip Per Day to Service the Facility
(6) Combined Trucks and Employees minus Trucks for Fruit Packing Operations per Appendix B

4.3.1 Combined Trucks and Employees

Like Existing Conditions, Phase One of the Project is projected to generate a combination of truck trips and employee trips. The summation of these trips is the total trips. These total trips are calculated by multiplying the number of employees by the trip generation rates. These rates were obtained from the Institute of Transportation Engineers (ITE) Trip Generation, Ninth Edition (2012) for General Light Industrial (ITE Land Use Code 110) as a function of employees.

4.3.2 Trucks Only

The truck-only analysis consists of: (1) trucks associated with the actual operations of the Kings River Packing facility, and (2) trucks associated with servicing the facility.

Kings River Packing operations consist of both inbound field trucks and outbound shipping trucks. The field trucks bring unpackaged fruit products to Kings River Packing Company, unload these products, and leave the facility empty. The shipping trucks arrive at Kings River Packing Company empty, load up the packaged fruit products, and leave the facility full. Product volumes are organized into bins. Each truck holds 50 bins. Entering and exiting truck volumes are identical. They are carrying fruit products in either a packaged or unpackaged state. For analysis purposes, each truck makes two trips - one entering the facility and one exiting the facility.

Appendix A provides further elaboration on the calculation of truck trips as a function of maximum daily production. At the completion of Phase One, the facility will operate at a maximum daily production of 3,500 bins per day during peak season as indicated in Appendix A Table 4-3. This correlates to a total of 68 inbound field trucks and 70 outbound shipping trucks on the Fresno County roadway network not including the 2 inbound field trucks that come in from adjacent orchards. The facility currently operates at a total service volume of 2,848 bins per day during peak season. This correlates to 55 inbound field trucks and 57 outbound shipping trucks impacting the Fresno County roadway network. The volume of net new trucks is calculated by subtracting the existing trucks from the Phase One trucks as indicated in Appendix A Table 4-4. This results in 13 net new inbound field trucks and 13 net new outbound shipping trucks.

Associated with the analysis of the truck operations analysis was the calculation of rates for converting weekday truck trips to peak hour truck trips. These rates were obtained by taking the ratio of the peak hour to the daily trip generation values in the combined truck and employee analysis.

The analysis of trucks associated with servicing the facility entailed an evaluation of the number of trucks needed to remove solid waste based on the volume of waste generated and the number of bins needed. On completion of Phase One, this facility is projected to generate 7 cubic yards of solid waste based on a maximum daily production of 3,500 bins per day at peak season, and the assumption that an operating volume of 500 bins generates one cubic yard of solid waste. This correlates to 7 cubic yards with Phase One and 6 cubic yards under existing conditions
based on rounding the existing maximum daily production up to 3,000 bins per day.
The analysis of the rate of filling of the number of waste containers entailed researching a publication on container capacities. According to Figure 2 of the Waste Management Desk Guide by Stanley Ismart, Chief, GSA-NCR Waste Management Unit in Washington DC, front end load containers for solid waste range from 2 cubic yards to 10 cubic yards in size. The median load container size is the Top and End Loading Five Cubic Yard container (slightly larger than the Apartment Four Cubic Yard container). This volume correlates to completely filling up one of these five cubic yard-size containers and partially filling a second container every day. This volume is easily serviced by a single Front End Loader or Rear End Loader waste management truck with compaction capabilities. This correlates to 1 truck or 2 diverted truck trips per day that are already on the roadway network servicing the existing facility.

4.3.3 Employees Only

Employee Trip Generation was calculated by proportioning the peak season trucks over the weekday, AM, and PM peak periods according to ITE Trip Generation rates, and then subtracting these values from the total trip generation to yield the employee trip generation. Table 12 shows the Phase One (with Existing Trips), Existing, and Net New Employee Trip Generation. Appendix B provides further elaboration on the calculation of total trips, truck-only trips, and employee only trips.

4.4 Trip Distribution

A trip distribution exhibit was prepared for the proposed two-phase expansion of the Kings River Packing Company facility on Trimmer Springs Road. This distribution was initially presented to Fresno County on November 15. It was approved during the Scoping Meeting on December 6.

The trip distribution analysis shows the dispersion of employee, visitor, packing company operations (arriving and departing trucks carrying unpackaged and packaged citrus fruit products), and site service trips (solid waste disposal trucks) throughout elements of the transportation network. Such elements include gates (points of entry to or exit from the network), paths (routes between gates and the site), and the site access intersections. According to the site plan, the project proposes three site accesses including one to the north, one in the center, and one to the south. The trip distribution percentages do not vary by type (truck, automobile) or purpose (employee, visitor, operations, service).

These trip distribution percentages were determined based on the following assumptions:

1. Trips would primarily originate and terminate to the southwest along the higher capacity roadways to the growing facilities, distribution centers, and municipalities.
2. Motorists and truck operators would prefer to use truck-designated and higher capacity roadways to traverse the network instead of more remote roadways with narrow bridges and steeper weight limit restrictions.
3. Employees, service truck operators, and produce-carrying truck operators are generally familiar with the roadway network. They will take the most direct pathways of least resistance.
4. While Phase One is likely to be fully operational in advance of the SR 180 improvements, the analysis is based on funded improvements being in place at the intersections of Rio Vista (1), Reed (2), and Oliver (3) along SR 180, as directed by Fresno County.
5. Growth within the nearby Fresno-Clovis Metropolitan Area would primarily be urban infill with some growth along the periphery.

Appendix B provides further elaboration on the trip distribution analysis.

4.5 Trip Assignment

Two trip assignment analyses were conducted during the initial summary assessment. These include one for total trips, and one for trucks only. For both exhibits, the Phase One trip generation values were multiplied by the trip distribution percentages to yield the link-specific trip assignments. These link-specific assignments apply to the peak season of operations. Appendix B shows these trip assignment values in tabular form.

Figure 7: Phase One Trip Assignment shows the Phase One Trip Assignment values for both total vehicles and trucks only along with the trip distribution percentages.

4.6 Volumes with Phase One

Figure 8: Near-Term Plus Phase One Volumes shows the passenger car equivalent (PCE) volumes used in the Near-Term Plus Phase One analysis. These values were obtained by adding the PCE's of the Phase One cars and trucks to the PCE's used in the Near-Term without Phase One analysis. Appendix F provides elaboration on the calculation of these traffic volumes. For analysis purposes, 1 truck is equivalent to 2.5 passenger cars, as directed by Fresno County.

4.7 Impacts on Intersection Operations

Appendices I (AM) and J (PM) contain the calculation reports for intersection operations without project. Appendices \mathbf{K} (AM) and L (PM) contain the calculation reports for intersection operations with project. These calculations are based on the Highway Capacity Manual methodology described in Section 2.

Peak Hour Factors are based on the default of 0.92 at the three Caltrans intersections and 0.70 (AM) and $0.82(\mathrm{PM})$ at the Site Access intersection.

Table 9 shows how Phase One would impact the study intersections. A 4\% Heavy Vehicle percentage was used for the three SR 180 intersections (1, 2, 3). A 12% Heavy Vehicle percentage was used for the Site Access/Trimmer Springs (4) intersection. SR 180/Reed (2) was assumed signalized as shown on the Caltrans plans with a 5.8 -second yellow time (65 MPH) eastbound and westbound and a 5.0 -second yellow time (55 MPH) northbound. The proposed SR 180 improvements were assumed to be in place including a sufficiently wide median to

accommodate median storage. Reported results are for either the intersection as a whole (signalized Intersection No. 2) or the worst-case movement (remaining intersections). Synchro 9 does not have a report creation function based on Highway Capacity Manual 2010 methodologies that reflects these geometric conditions. Therefore, the Highway Capacity Manual 2000 reporting was used for the un-signalized analyses along SR 180. Synchro 9 also does not have a report creation function that accommodates an approach speed of higher than 55 MPH at a signalized intersection. Therefore, the Highway Capacity Manual 2000 reporting was used for the signalized analysis of SR 180/Reed (2).

Table 9: Phase One Impact on Intersection Operations

	Without Phase One		With Phase One	
	AM	PM	AM	PM
1: SR 180/Rio Vista	23.2 C	30.0 D	23.2 C	30.4 D
2: SR 180/Reed	8.1 A	10.8 B	8.1 A	10.8 B
3: SR 180/Oliver	26.8 D	30.6 D	27.5 D	30.7 D
4: Trimmer Springs/Site	10.2 B	10.0 B	10.5 B	10.3 B

Source: Trafficware, Synchro 9
Source: Transportation Research Board, Highway Capacity Manual 2010

4.8 Impacts on Roadway Segment Operations

Appendix D contains the calculation reports for the evaluation of capacity and along the two roadway segments based on the Florida DOT methodology described in Section 2.

Table 10 shows how Phase One would impact the roadway segments.
Table 10: Phase One Impact on Roadway Segment Operations

	Without Phase One		With Phase One	
	Volume	LOS	Volume	LOS
A: Belmont w/o Academy	1,600	B	1,609	B
B: Trimmer Springs s/o Site	1,530	B	1,592	B

Source: Florida DOT Generalized Service Volume Tables

A: Table 2: Generalized Annual Average Daily Volumes for Florida's Transitioning Areas for State Signalized Arterials Class I ($>40 \mathrm{mph}$)
B: Table 3: Generalized Annual Average Daily Volumes for Florida's Rural Undeveloped Areas for Uninterrupted Flow Highways

5.0 Full Build-out Impact Analysis

The Full Build-out Impact Analysis was conducted to assess the impact of the Full Build-out of the project relative to the existing project. This impact analysis accounts for background traffic growth, infrastructure improvements, and development projects through the Fresno COG planning horizon.

5.1 Setting

The Full Build-out setting assumes the completion of the SR 180 improvements which are projected to come online around 2020. These improvement plans were made available by Fresno County. The cover sheet of these improvement plans is provided on the attached CD.

5.2 Volumes without Project

Figure 9: Cumulative Volumes shows the cumulative without project traffic volumes obtained from existing counts and the existing and full build-out travel demand model runs from Fresno COG. These volumes are expressed as Passenger Car Equivalents (PCE's). Appendix F shows the traffic volume projections at the intersections. For analysis purposes, 1 truck (higher than Class 3) is equivalent to 2.5 passenger cars, as directed by Fresno County.

5.3 Trip Generation

Table 11 shows the results of the Full Build-out trip generation analysis. Like the Phase One analysis, this analysis includes three components: (1) Combined Trucks and Employees, (2) Trucks Only, and (3) Employees Only. This trip generation only applies to the Level of Service analysis. A separate trip generation table shows the trip generation that applies to the TI analysis.

Kings River Packing Company Expansion
CIVIL ENGINEERING, INC.

Table 11: Trip Generation: Full Build-out

Description	Employees	Weekday	AM Peak Hour			PM Peak Hour		
		Total	Enter	Exit	Total	Enter	Exit	Total
Combined Trucks and Employees								
Directional Split			84\%	16\%		21\%	79\%	
General Light Industrial (110) Rates (1)		3.02	0.37	0.07	0.44	0.09	0.33	0.42
Full Build-out Trips	300	906	111	21	132	27	99	126
Existing Trips	150	453	56	10	66	14	49	63
Net New Trips (2)	150	453	55	11	66	13	50	63
Trucks for Fruit Packing Operations (3)								
Peak Hour Rates (4)			0.25	0.05	0.15	0.06	0.22	0.14
Full Build-out Trips	300	396	49	9	58	12	43	55
Existing Trips	150	224	28	5	33	7	24	31
Net New Trips (2)	150	172	21	4	25	5	19	24
Trucks for Servicing the Facility (5)								
Full Build-out Trips	300	2	0	0	0	0	0	0
Existing Trips	150	2	0	0	0	0	0	0
Net New Trips (2)	150	0	0	0	0	0	0	0
Employees Only (6)								
Full Build-out Trips	300	510	62	12	74	15	56	71
Existing Trips	150	229	28	5	33	7	25	32
Net New Trips (2)	150	281	34	7	41	8	31	39

(1) Source: Institute of Transportation Engineers (ITE), Trip Generation, Ninth Edition (2012) for the General Light Industrial Land Use (ITE Land Use Code 110) as a function of employees
(2) Phase One Trips minus Existing Trips
(3) Inbound Field Trucks and Outbound Shipping Trucks
(4) Rate $=($ Combined Per Hour Trips $) /($ Combined Weekday Trips Per Appendix B)
(5) One Service Truck Making One Inbound and One Outbound Diverted Trip Per Day to Service the Facility
(6) Combined Trucks and Employees minus Trucks for Fruit Packing Operations per Appendix B

5.3.1 Combined Trucks and Employees

Like Existing and Phase One Conditions, the Full Build-out of the Project is projected to generate a combination of truck trips and employee trips. The summation of these trips is the total trips. These total trips are calculated by multiplying the number of employees by the rates obtained from the Institute of Transportation Engineers (ITE) Trip Generation, Ninth Edition (2012) for the General Light Industrial Land Use (ITE Land Use Code 110) as a function of employees.

5.3.2 Trucks Only

Appendix A provides further elaboration on the calculation of truck trips as a function of maximum daily production under Full Build-out conditions. This methodology is the same as that of Phase One methodology, except that Full Build-out involves more trucks. At the completion of Full Build-out, the facility will operate at a maximum daily production of 5,000 bins per day during peak season. This correlates to a total of 98 inbound field trucks and 100 outbound shipping trucks on the Fresno County roadway network not including the 2 inbound field trucks that come from adjacent orchards. This information is indicated in Appendix A Table 4-3. Net new truck generation for Full Build-out is calculated by subtracting out the trip generation for the existing facility. The resulting net new truck generation is 43 inbound field trucks and 43 outbound shipping trucks as indicated in Appendix A Table 4-4.

As in the Phase One analysis, weekday truck trips were converted to peak hour truck trips by calculating the ratio of the peak hour to the weekday trips in the combined truck and employee analysis.

The analysis of the impact of service trucks for solid waste removal also uses the same methodology as that of the Phase One analysis. The difference is in the total amount of solid waste. On completion of Full Build-out, this facility is projected to generate 10 cubic yards of solid waste based on a maximum daily production of 5,000 bins per day at peak season and an operating volume of 500 bins generating one cubic yard of solid waste. This correlates to 10 cubic yards with Full Build-out and 6 cubic yards under existing conditions based on rounding the existing maximum daily production up to 3,000 bins per day. The same assumption of dual five-cubic yard receptacles from the Existing and Phase One analyses apply to this Full Build-out analysis. The only difference is that both receptacles would be full. There would be no difference in the number of service truck trips under existing conditions as they are already servicing the existing facility.

5.3.3 Employees Only

Employee Trip Generation at Full Build-out was calculated using the same methodology as described in the Phase One analysis. Table 21 shows the Full Build-out (with Existing Trips), Existing, and Net New Employee Trip Generation.

Appendix B provides further elaboration on the calculation of total trips, truck-only trips, and employee only trips under Full Build-out conditions.

5.4 Trip Distribution

The trip distribution analysis for Full Build-out was conducted using the same methodology as in the Phase One analysis. The trip distribution percentages and assumptions are unchanged.

Appendix B provides further elaboration on the trip distribution analysis under Full Build-out conditions.

5.5 Trip Assignment

The Trip Assignment Analysis for Full Build-out was conducted for both total trips (combined trucks and employees) and truck-only trips using the same methodology as described in the Phase One analysis. Appendix B shows these trip assignment values in tabular form.

Figure 10: Full Build-out Trip Assignment shows the total and truck-only trip assignments along with the trip distribution percentages.

5.6 Volumes with Full Build-out

Figure 11: Cumulative Plus Full Build-out Volumes shows the passenger car equivalent (PCE) volumes used in the Full Build-out Impact Analysis under with Project conditions. These values were obtained by adding the PCE's of the Full Build-out cars and trucks to the PCE's used in the Cumulative without Project analysis. Appendix F provides elaboration on the calculation of these traffic volumes. For analysis purposes, 1 truck is equivalent to 2.5 passenger cars, as directed by Fresno County.

5.7 Impacts on Intersection Operations

Appendices M (AM) and \mathbf{N} (PM) contain the calculation reports for intersection operations without project. Appendices \mathbf{O} (AM) and P (PM) contain the calculation reports for intersection operations with project. These calculations are based on the Highway Capacity Manual methodology described in Section 2.

Table 12 shows the impact of the Full Build-out of the Project on the study intersections using the same peak hour factor, heavy vehicle, and related assumptions, while noting the same Synchro reporting limitations as before.

Table 12: Impact of Full Build-out on Intersection Operations

	Without Project		With Full Build-out	
	AM	PM	AM	PM
1: SR 180/Rio Vista	44.2 E	52.8 F	44.2 E	62.7 F
2: SR 180/Reed	8.5 A	12.6 B	8.6 A	12.6 B
3: SR 180/Oliver	58.3 F	54.4 F	71.8 F	58.5 F
4: Trimmer Springs/Site	10.2 B	10.0 B	11.0 B	10.9 B

Source: Trafficware, Synchro 9
Source: Transportation Research Board, Highway Capacity Manual 2010

5.8 Impacts on Roadway Segment Operations

Appendix D contains the calculation reports for the evaluation of capacity along the two roadway segments based on the Florida DOT methodology described in Section 2.

Table 13 shows how the Full Build-out of the Project would impact the operation of the roadway

segments.
Table 13: Impact of Full Build-out on Roadway Segment Operations

	Without Project		With Full Build-out	
	Volume	LOS	Volume	LOS
A: Belmont w/o Academy	1,735	B	1,755	B
B: Trimmer Springs s/o Site	1,530	B	1,723	B

Source: Florida DOT Generalized Service Volume Tables
A: Table 2: Generalized Annual Average Daily Volumes for Florida's Transitioning Areas for State Signalized Arterials Class I ($>40 \mathrm{mph}$)
B: Table 3: Generalized Annual Average Daily Volumes for Florida's Rural Undeveloped Areas for Uninterrupted Flow Highways

5.9 Impacts on Roadway Segment Structural Sections

Appendix C contains the calculation reports for the evaluation of structural integrity (Traffic Index or TI) along the two roadway segments. These structural integrity calculations are based on: (1) 24 -hour vehicle and vehicle classification counts obtained by Metro Traffic Data on Wednesday, December 20, 2017; (2) 24-hour vehicle counts obtained by Metro Traffic Data on Thursday, December 7, 2017; (3) Fresno COG travel demand modeling projections, and (4) the Average Annual Daily Truck Traffic (AADTT) calculated in Appendix A Table 1-1. The AADT calculations reduces the existing peak one way truck trips to 80 trucks per day, as previously allowed by the previous CUP. Based on the field data provided the existing production exceeded the 80 truck trips on some of the weeks. Table 4-2. For analysis purposes, it was assumed that project-generated truck trips were Class 9, as this was the predominant five-axle vehicle noted in the vehicle classification counts along Trimmer Springs.

Given the significant fluctuation in packing operations from week to week, it was necessary to obtain 24 -hour counts during two different weeks for comparison purposes to gauge this fluctuation. The 24 -hour counts obtained on December 7 were higher than those obtained on December 20. Therefore, an adjustment factor was applied to the vehicle classification counts to convert them to the higher values as indicated on the tables in Appendix C.

The Fresno COG travel demand modeling projections were used to calculate growth factors over the 20-year planning horizon as indicated on the tables in Appendix C.

The AADTT values calculated in Appendix A Table 4-2 were applied to the roadway segments by multiplying the AADTT value by the segment-specific trip distribution percentage. While the trip distribution analysis only shows 10% on Belmont west of Academy, a distribution of 40% was used to reflect Belmont west of Oliver. This was to assess conditions based on Belmont being open to through traffic.

Table 14 summarizes the Average Daily Truck trips that was used to calculate TI.

Table 14: Project Truck Trips (AADT) for TI Analysis

	Outbound Enter (2)	Shipping Exit (3)	Inbound Enter (4)	Field (1) Exit (5)	Total Trips
Full Build-out	31	31	29	29	120
Phase One	22	22	20	20	84
Existing (6)	13	13	11	11	48

(1) Excludes 2 from Adjacent Orchards via Dirt Roads
(2) Arrives Empty
(3) Leaves Full
(4) Arrives Full
(5) Leaves Empty
(6) Based on Table 1-1 in Appendix A.

Table 15 summarizes the TI analysis and results.
Table 15: TI Results

| | Without Project | | | With Project | | | Impact |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | ESAL | Calculated | Rounded | ESAL | Calculated | Rounded | |
| Belmont west of
 Academy EB | 366,140 | 7.99 | 8.0 | 421,260 | 8.12 | 8.0 | No |
| Belmont west of
 Academy WB | 375,320 | 8.01 | 8.0 | 430,440 | 8.14 | 8.0 | No |
| Trimmer Springs
 south of Site NB | 718,900 | 8.65 | 8.5 | $1,173,640$ | 9.17 | 9.0 | Yes |
| Trimmer Springs
 south of Site SB | 806,160 | 8.77 | 9.0 | $1,260,900$ | 9.25 | 9.5 | Yes |
| Belmont: Oliver-Rio
 Vista EB | 718,900 | 8.65 | 8.5 | $1,090,960$ | 9.09 | 9.0 | Yes |
| Belmont: Oliver-Rio
 Vista WB | 806,160 | 8.77 | 9.0 | $1,178,220$ | 9.18 | 9.0 | No |

Sources: Caltrans Highway Design Manual (November 20, 2017), Metro Traffic Data (December 2017)
A TI impact of ≥ 0.5 is considered significant per Fresno County Draft Traffic Impact Study Guidelines (2014).

Determination of significance is based on rounded results.

6.0 Findings and Recommendations

6.1 Findings

Findings from the Existing Conditions Analysis and the Phase One and Full Build-out Impact Analyses are as follows:

6.1.1 Existing Conditions

Table 16 summarizes the Intersection LOS.
Table 16: Summary of Existing Intersection Conditions

	Existing	
	AM	PM
1: SR 180/Rio Vista	31.5 D	41.3 E
2: SR 180/Reed	21.1 C	423.4 F
3: SR 180/Oliver	234.8 F	418.1 F
4: Trimmer Springs/Site	10.2 B	10.0 B

Source: Trafficware, Synchro 9
Source: Transportation Research Board, Highway Capacity Manual 2010

Table 17 summarizes the Segment LOS.
Table 17: Summary of Existing Roadway Capacity Conditions

Intersection	LOS
A: Belmont w/o Academy	$1,525 \mathrm{~B}$
B: Trimmer Springs s/o Site	$1,530 \mathrm{~B}$

Source: Florida DOT Generalized Service Volume Tables
A: Table 2: Generalized Annual Average Daily Volumes for Florida's Transitioning Areas for State Signalized Arterials Class I (>40 mph)
B: Table 3: Generalized Annual Average Daily Volumes for Florida’s Rural Undeveloped Areas for Uninterrupted Flow Highways

Scenario-specific findings are as follows:

1. All intersections along SR 180 (1-3) currently operate at an unacceptable Level of Service of E or F during one or both peak hours, thereby justifying the proposed and fully funded improvements.
2. The Site Access Intersection along Trimmer Springs Road (4) currently operates at an acceptable Level of Service of B.
3. Both roadway segments currently operate at an acceptable Level of Service B.
4. A revised Operational Statement was provided to Fresno County in May 2018 indicating that the 80 one-way truck-cap was only exceeded occasionally.

6.1.2 Phase One Impacts

Kings River Packing Company Expansion
CIVILENGINEERING, INC.

Table 18 summarizes the impacts on Intersection LOS.
Table 18: Summary of Phase One Impacts on Intersection Operations

Without Phase One		With Phase One		
	AM	PM	AM	PM
1: SR 180/Rio Vista	23.2 C	30.0 D	23.2 C	30.4 D
2: SR 180/Reed	8.1 A	10.8 B	8.1 A	10.8 B
3: SR 180/Oliver	26.8 D	30.6 D	27.5 D	30.7 D
4: Trimmer Springs/Site	10.2 B	10.0 B	10.5 B	10.3 B

Source: Trafficware, Synchro 9
Source: Transportation Research Board, Highway Capacity Manual 2010

Table 19 summarizes the impacts on Segment LOS.
Table 19: Summary of Phase One Impacts on Roadway Segment Operations

	Without Phase One		With Phase One	
	Volume	LOS	Volume	LOS
A: Belmont w/o Academy	1,600	B	1,609	B
B: Trimmer Springs s/o Site	1,530	B	1,592	B

Source: Florida DOT Generalized Service Volume Tables
A: Table 2: Generalized Annual Average Daily Volumes for Florida's Transitioning Areas for State Signalized Arterials Class I (>40 mph)
B: Table 3: Generalized Annual Average Daily Volumes for Florida's Rural Undeveloped Areas for Uninterrupted Flow Highways

Scenario-specific findings are as follows:

1. Phase One will not increase overall intersection delays by more than 5 seconds, which is considered a less than significant impact.
2. Phase One will not change the Level of Service designation along either roadway segment, which is considered a less than significant impact.

6.1.3 Full Build-out Impacts

Table 20 summarizes the impacts on Intersection LOS.
Table 20: Summary of Impacts of Full Build-out on Intersection Operations

Without Project	With Full Build-out			
	AM	PM	AM	PM
1: SR 180/Rio Vista	44.2 E	52.8 F	44.2 E	62.7 F
2: SR 180/Reed	8.5 A	12.6 B	8.6 A	12.6 B
3: SR 180/Oliver	58.3 F	54.4 F	71.8 F	58.5 F
4: Trimmer Springs/Site	10.2 B	10.0 B	11.0 B	10.9 B

Source: Trafficware, Synchro 9

Table 21 summarizes the impacts on Segment LOS.

Table 21: Summary of Impacts of Full Build-out on Roadway Segment Operations

	Volume	LOS	Volume	LOS
	1,735	B	1,755	B
A: Belmont w/o Academy	1,530	B	1,723	B
B: Trimmer Springs s/o Site	$1,5 i t h o u t ~ P r o j e c t ~$			

Source: Florida DOT Generalized Service Volume Tables
A: Table 2: Generalized Annual Average Daily Volumes for Florida's Transitioning Areas for State Signalized Arterials Class I (>40 mph)
B: Table 3: Generalized Annual Average Daily Volumes for Florida’s Rural Undeveloped Areas for Uninterrupted Flow Highways

Table 22 summarizes trip generation used to calculate TI.
Table 22: Trip Generation for TI Analysis

	Outbound Enter (2)	Shipping Exit (3)	Inbound Enter (4)	Field (1) Exit (5)	Total Trips
Full Build-out	31	31	29	29	120
Phase One	22	22	20	20	84
Existing	13	13	11	11	48

(1) Excludes 2 from Adjacent Orchards via Dirt Roads
(2) Arrives Empty
(3) Leaves Full
(4) Arrives Full
(5) Leaves Empty

Table 23 summarizes the TI results.
Table 23: TI Results

| | Without Project | | | With Project | | | Impact |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ESAL | Calculated | Rounded | ESAL | Calculated | Rounded | | |
| Belmont west of
 Academy EB | 366,140 | 7.99 | 8.0 | 421,260 | 8.12 | 8.0 | No |
| Belmont west of
 Academy WB | 375,320 | 8.01 | 8.0 | 430,440 | 8.14 | 8.0 | No |
| Trimmer Springs
 south of Site NB | 718,900 | 8.65 | 8.5 | $1,173,640$ | 9.17 | 9.0 | Yes |
| Trimmer Springs
 south of Site SB | 806,160 | 8.77 | 9.0 | $1,260,900$ | 9.25 | 9.5 | Yes |
| Belmont: Oliver-Rio
 Vista EB | 718,900 | 8.65 | 8.5 | $1,090,960$ | 9.09 | 9.0 | Yes |
| Belmont: Oliver-Rio
 Vista WB | 806,160 | 8.77 | 9.0 | $1,178,220$ | 9.18 | 9.0 | No |

Sources: Caltrans Highway Design Manual (November 20, 2017), Metro Traffic Data (December 2017)
A TI impact of ≥ 0.5 is considered significant per Fresno County Draft Traffic Impact Study Guidelines
(2014).

Determination of significance is based on rounded results.
Scenario-specific findings are as follows:

1. While the project will not pose a significant impact on overall intersection operations at SR 180/Rio Vista (1) and SR 180/Oliver (3) under Full Build-out conditions, the delay on certain side street left-turn movements may increase by more than five seconds. Caltrans was consulted for the scope of the study. In the conditions of approval, the response from Caltrans was no comment.
2. Full Build-out will not change the Level of Service designation along either roadway segment, which is considered a less than significant impact.
3. Full Build-out will not change the TI on Belmont West of Academy in either the Eastbound or Westbound Directions, which is considered a less than significant impact.
4. Full Build-out will increase the TI on Northbound Trimmer Springs by 0.5 from 8.5 to 9.0, which is considered a significant impact.
5. Full Build-out will increase the TI on Southbound Trimmer Springs by 0.5 from 9.0 to 9.5 , which is considered a significant impact.
6. Full Build-out will increase the TI on Eastbound Belmont between Oliver and Rio Vista by 0.5 from 8.5 to 9.0 which is considered a significant impact.
7. Full Build-out will not change the TI on Westbound Belmont between Oliver and Rio Vista, which is considered a less than significant impact.

6.2 Recommendations

Recommendations are as follows:

1. Explore Transportation Demand Management (TDM) options such as employee carpooling to reduce roadway impacts and on-site parking demand.
2. Provide Site Frontage Improvements and Clear Delineation of Site Access Locations to minimize conflicts between motorists and trucks. No median storage or deceleration lanes would be needed at the site accesses. These accesses are projected to continue to operate at an acceptable Level of Service of B under Full Build-out conditions, and storage lengths are projected to continue to be adequate through Full Build-out. Right turn lanes will be provided anyway to facilitate operations and enhance safety.
3. Conduct a follow-up LOS analysis at SR 180/Oliver (3) after the completion of the SR 180 improvements to capture the effects of revised patterns in background traffic generated by these improvements if any.
4. Conduct a TI analysis on Oliver between SR 180 and Belmont following the completion of the SR 180 improvements to: (a) reflect Belmont being improved and open to through traffic, and (b) capture the effects of revised patterns in background traffic generated by the SR 180 improvements if any.

Appendix A: Facility Production and Daily Truck Trip Generation

Month	week	Weekly Bin Count incoming	Capped Weekly Bin Count incoming	Average Daily Bins (1)	Average Daily Inbound Field Trucks (2)	Average Daily Outbound Shipping Trucks (3)	Average Daily Adjusted incoming trucks (4)	Average Daily Offroad incoming trucks (5)	Average Daily Onroad incoming trucks	Average Daily Adjusted Ougoing trucks (4)	Total Oneway Truck Trips
October	week 1	0	0	0.0	0.0	0.0	0	0	0	0	0
	week 2	2217	2217	369.5	16.0	16.0	16	(2)	14	16	30
	week 3	5243	5243	873.8	36.0	36.0	36	(4)	32	36	68
	week 4	5810	5810	968.3	40.0	40.0	40	(5)	35	40	75
November	week 1	6777	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 2	8624	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 3	4031	4031	671.8	28.0	28.0	28	(3)	25	28	53
	week 4	6944	6000	1000.0	40.0	40.0	40	(5)	35	40	75
December	week 1	6798	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 2	7376	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 3	7355	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 4	10877	6000	1000.0	40.0	40.0	40	(5)	35	40	75
January	week 1	7668	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 2	4512	4512	752.0	32.0	32.0	32	(4)	28	32	60
	week 3	6768	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 4	17089	6000	1000.0	40.0	40.0	40	(5)	35	40	75
February	week 1	6759	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 2	14047	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 3	10712	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 4	9330	6000	1000.0	40.0	40.0	40	(5)	35	40	75
March	week 1	9108	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 2	14322	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 3	13605	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 4	9944	6000	1000.0	40.0	40.0	40	(5)	35	40	75
April	week 1	10833	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 2	11093	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 3	5091	5091	848.5	34.0	34.0	34	(4)	30	34	64
	week 4	7261	6000	1000.0	40.0	40.0	40	(5)	35	40	75
May	week 1	5214	5214	869.0	36.0	36.0	36	(4)	32	36	68
	week 2	6638	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 3	6353	6000	1000.0	40.0	40.0	40	(5)	35	40	75
	week 4	3085	3085	514.2	22.0	22.0	22	(3)	19	22	41
June	week 1	1694	1694	282.3	12.0	12.0	12	(1)	11	12	23
	week 2	1190	1190	198.3	8.0	8.0	8	(1)	7	8	15
	week 3	551	551	91.8	4.0	4.0	4	0	4	4	8
	week 4	802	802	133.7	6.0	6.0	6	(1)	5	6	11
July	week 1	537	537	89.5	4.0	4.0	4	0	4	4	8
	week 2	236	236	39.3	2.0	2.0	2	0	2	2	4
	week 3	340	340	56.7	4.0	4.0	4	0	4	4	8
	week 4	480	480	80.0	4.0	4.0	4	0	4	4	8
August	week 1	260	260	43.3	2.0	2.0	2	0	2	2	4
	week 2	465	465	77.5	4.0	4.0	4	0	4	4	8
	week 3	168	168	28.0	2.0	2.0	2	0	2	2	4
	week 4	0	0	0.0	0.0	0.0	0	0	0	0	0

Total 258,207
Total Capped
Ex AADT (6) = 72 Trucks
Baseline AADT capped $=\quad 48$ Trucks
(1) Average 6 day work week.
(2) 50 bins per truck. One truck is 2 one-way trips.
(3) Outgoing trucks is equivalent to incoming trucks.
(4) Incoming trucks capped at 20 trucks oneway incoming \& 20 trucks oneway outgoing per day based on previous operational statement.
(5) Offroad trucks assuming 11.4% of incoming trucks uses adjacent offroad routes.
(6) AADT $=$ Total Bins /(50 bins per truck $\times 300$ days)

Table 1-2: Typical Daily Operations

2_Production Details

Table 2-2: Existing Production Statistics (Calendar Year 2016)

Metric					Quantity		Explanation
Total Annual Production in Bins	258,073	Table 2-1: Total (Calendar Year 2016)					

[^0]Table 2-4: Full Build-out Production Statistics (Calendar Year 2035)

Metric	Quantity	Explanation
Target Daily Production in Bins	1,550	
Outbound Shipping Trucks	31	$(5,000$ bins $) /(50$ bins per truck $)=100$ Trucks
Inbound Field Trucks from Orchards	2	Table 2-2
Inbound Field Trucks from Paved Roads	29	(100 Outbound Shipping Trucks) - (2 Inbound Field Trucks from Orchards) $=98$ Trucks

Table 4-1: Summary of Total Truck Trips (AADT)

Appendix B: Total, Truck, and Employee Trip Generation, Distribution, and Assignment

1_Total_Trip_Generation

Code	Land Use	Phase	Employees	Weekday			AM Peak Hour			PM Peak Hour		
				Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
110	General Light Industrial	Existing	150	1.51	1.51	3.02	0.37	0.07	0.44	0.09	0.33	0.42
110	General Light Industrial	Existing Plus Phase One	195	1.51	1.51	3.02	0.37	0.07	0.44	0.09	0.33	0.42
110	General Light Industrial	Existing Plus Full Build-out	300	1.51	1.51	3.02	0.37	0.07	0.44	0.09	0.33	0.42
110	General Light Industrial	Phase One Only	45	1.51	1.51	3.02	0.37	0.07	0.44	0.09	0.33	0.42
110	General Light Industrial	Full Build-out Only	150	1.51	1.51	3.02	0.37	0.07	0.44	0.09	0.33	0.42

Table 1.2: Total Trip Generation

			Weekday			AM Peak Hour		PM Peak Hour	
Code	Land Use	Phase	Employees	Enter	Exit	Total	Enter	Exit	Total
Enter	Exit	Total							
110	General Light Industrial	Existing	150	227	226	453	56	10	66
110	General Light Industrial	Existing Plus Phase One	195	295	294	589	72	14	86
110	General Light Industrial	Existing Plus Full Build-out	300	453	453	906	111	21	132
110	27	94	82						
110	General Light Industrial	Phase One Only	45	68	68	136	16	4	20
110	General Light Industrial	Full Build-out Only	150	226	227	453	55	11	66

3_Phase_One

	Description	Percentage	Weekday			AM Peak Hour			PM Peak Hour		
			Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
1	Trimmer Springs North	10.0\%	6.8	6.8	13.6	1.6	0.4	2.0	0.4	1.5	1.9
2	SR 180 East	7.5\%	5.1	5.1	10.2	1.2	0.3	1.5	0.3	1.1	1.4
3	Reed South	7.5\%	5.1	5.1	10.2	1.2	0.3	1.5	0.3	1.1	1.4
4	Riverbend South	5.0\%	3.4	3.4	6.8	0.8	0.2	1.0	0.2	0.8	1.0
5	Rainbow Southwest	10.0\%	6.8	6.8	13.6	1.6	0.4	2.0	0.4	1.5	1.9
6	Academy South	25.0\%	17.0	17.0	34.0	4.0	1.0	5.0	1.0	3.8	4.8
7	SR 180 West	20.0\%	13.6	13.6	27.2	3.2	0.8	4.0	0.8	3.0	3.8
8	Belmont West	10.0\%	6.8	6.8	13.6	1.6	0.4	2.0	0.4	1.5	1.9
9	Riverbend North-Shields West	5.0\%	3.4	3.4	6.8	0.8	0.2	1.0	0.2	0.8	1.0
	Total	100.0\%									

4_Full_Build_out

1_Truck_Trip_Generation

Code	Land Use	Phase	Employees	Weekday			AM Peak Hour			PM Peak Hour		
				Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
110	General Light Industrial	Existing	150	1.51	1.51	3.02	0.37	0.07	0.44	0.09	0.33	0.42
110	General Light Industrial	Existing Plus Phase One	195	1.51	1.51	3.02	0.37	0.07	0.44	0.09	0.33	0.42
110	General Light Industrial	Existing Plus Full Build-out	300	1.51	1.51	3.02	0.37	0.07	0.44	0.09	0.33	0.42
110	General Light Industrial	Phase One Only	45	1.51	1.51	3.02	0.37	0.07	0.44	0.09	0.33	0.42
110	General Light Industrial	Full Build-out Only	150	1.51	1.51	3.02	0.37	0.07	0.44	0.09	0.33	0.42

\footnotetext{
Table T1.2: Total Trip Generation

Code	Land Use	Phase	Employees	Weekday			AM Peak Hour			PM Peak Hour		
				Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
110	General Light Industrial	Existing	150	227	226	453	56	10	66	14	49	63
110	General Light Industrial	Existing Plus Phase One	195	295	294	589	72	14	86	18	64	82
110	General Light Industrial	Existing Plus Full Build-out	300	453	453	906	111	21	132	27	99	126
110	General Light Industrial	Phase One Only	45	68	68	136	16	4	20	4	15	19
110	General Light Industrial	Full Build-out Only	150	226	227	453	55	11	66	13	50	63

\footnotetext{
Table T1.3: Trip Generation Proportions

Code	Land Use	Phase	Employees	Weekday			AM Peak Hour			PM Peak Hour		
				Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
110	General Light Industrial	Existing	150	227	226	453	0.25	0.04	0.15	0.06	0.22	0.14
110	General Light Industrial	Existing Plus Phase One	195	295	294	589	0.24	0.05	0.15	0.06	0.22	0.14
110	General Light Industrial	Existing Plus Full Build-out	300	453	453	906	0.25	0.05	0.15	0.06	0.22	0.14
110	General Light Industrial	Phase One Only	45	68	68	136	0.24	0.06	0.15	0.06	0.22	0.14
110	General Light Industrial	Full Build-out Only	150	226	227	453	0.24	0.05	0.15	0.06	0.22	0.14

Code	Land Use	Phase	Employees	Weekday			AM Peak Hour			PM Peak Hour		
				Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
110	General Light Industrial	Existing	150	112	112	224	28	5	33	7	24	31
110	General Light Industrial	Existing Plus Phase One	195	138	138	276	34	7	41	8	30	38
110	General Light Industrial	Existing Plus Full Build-out	300	198	198	396	49	9	58	12	43	55
110	General Light Industrial	Phase One Only	45	26	26	52	6	2	8	1	6	7
110	General Light Industrial	Full Build-out Only	150	86	86	172	21	4	25	5	19	24

2_Existing

No	Description	Percentage	Weekday			AM Peak Hour			PM Peak Hour		
			Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
1	Trimmer Springs North	10.0\%	11.2	11.2	22.4	2.8	0.5	3.3	0.7	2.4	3.1
2	SR 180 East	7.5\%	8.4	8.4	16.8	2.1	0.4	2.5	0.5	1.8	2.3
3	Reed South	7.5\%	8.4	8.4	16.8	2.1	0.4	2.5	0.5	1.8	2.3
4	Riverbend South	5.0\%	5.6	5.6	11.2	1.4	0.3	1.7	0.4	1.2	1.6
5	Rainbow Southwest	10.0\%	11.2	11.2	22.4	2.8	0.5	3.3	0.7	2.4	3.1
6	Academy South	25.0\%	28.0	28.0	56.0	7.0	1.3	8.3	1.8	6.0	7.8
7	SR 180 West	20.0\%	22.4	22.4	44.8	5.6	1.0	6.6	1.4	4.8	6.2
8	Belmont West	10.0\%	11.2	11.2	22.4	2.8	0.5	3.3	0.7	2.4	3.1
9	Riverbend North-Shields West	5.0\%	5.6	5.6	11.2	1.4	0.3	1.7	0.4	1.2	1.6
	Total	100.0\%									

Table T2.2: Path

Ltr		Percentage	Weekday			AM Peak Hour			PM Peak Hour		
			Enter		Total	Enter	Exit	Total	Enter	Exit	Total
A	Academy: SR 180-Belmont	20.0\%	22.4	22.4	44.8	5.6	1.0	6.6	1.4	4.8	6.2
B	Newmark: SR 180-Belmont	5.0\%	5.6	5.6	11.2	1.4	0.3	1.7	0.4	1.2	1.6
C	Oliver: SR 180-Belmont	35.0\%	39.2	39.2	78.4	9.8	1.8	11.6	2.5	8.4	10.9
D	SR 180: Newmark-Oliver	20.0\%	22.4	22.4	44.8	5.6	1.0	6.6	1.4	4.8	6.2
E	Belmont: Riverbend-Oliver	40.0\%	44.8	44.8	89.6	11.2	2.0	13.2	2.8	9.6	12.4

No	Belmont/Academy	Percentage	Weekday			AM Peak Hour			PM Peak Hour		
			Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
1		30.0\%	33.6	33.6	67.2	8.4	1.5	9.9	2.1	7.2	9.3
2	Belmont/Oliver	75.0\%	84.0	84.0	168.0	21.0	3.8	24.8	5.3	18.0	23.3
3	SR 180/Oliver	35.0\%	39.2	39.2	78.4	9.8	1.8	11.6	2.5	8.4	10.9
4	SR 180/Academy	45.0\%	50.4	50.4	100.8	12.6	2.3	14.9	3.2	10.8	14.0

\footnotetext{
Table T2.4: Site

3_Phase_One

No	Description	Percentage	Weekday			AM Peak Hour			PM Peak Hour		
			Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
1	Trimmer Springs North	10.0\%	2.6	2.6	5.2	0.6	0.2	0.8	0.1	0.6	0.7
2	SR 180 East	7.5\%	2.0	2.0	3.9	0.5	0.2	0.6	0.1	0.5	0.5
3	Reed South	7.5\%	2.0	2.0	3.9	0.5	0.2	0.6	0.1	0.5	0.5
4	Riverbend South	5.0\%	1.3	1.3	2.6	0.3	0.1	0.4	0.1	0.3	0.4
5	Rainbow Southwest	10.0\%	2.6	2.6	5.2	0.6	0.2	0.8	0.1	0.6	0.7
6	Academy South	25.0\%	6.5	6.5	13.0	1.5	0.5	2.0	0.3	1.5	1.8
7	SR 180 West	20.0\%	5.2	5.2	10.4	1.2	0.4	1.6	0.2	1.2	1.4
8	Belmont West	10.0\%	2.6	2.6	5.2	0.6	0.2	0.8	0.1	0.6	0.7
9	Riverbend North-Shields West	5.0\%	1.3	1.3	2.6	0.3	0.1	0.4	0.1	0.3	0.4
	Total	100.0\%									

Table T3.2: Path

Table T3.4: Site

4_Full_Build_out

	Description	Percentage	Weekday			AM Peak Hour			PM Peak Hour		
			Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
1	Trimmer Springs North	10.0\%	8.6	8.6	17.2	2.1	0.4	2.5	0.5	1.9	2.4
2	SR 180 East	7.5\%	6.5	6.5	12.9	1.6	0.3	1.9	0.4	1.4	1.8
3	Reed South	7.5\%	6.5	6.5	12.9	1.6	0.3	1.9	0.4	1.4	1.8
4	Riverbend South	5.0\%	4.3	4.3	8.6	1.1	0.2	1.3	0.3	1.0	1.2
5	Rainbow Southwest	10.0\%	8.6	8.6	17.2	2.1	0.4	2.5	0.5	1.9	2.4
6	Academy South	25.0\%	21.5	21.5	43.0	5.3	1.0	6.3	1.3	4.8	6.0
7	SR 180 West	20.0\%	17.2	17.2	34.4	4.2	0.8	5.0	1.0	3.8	4.8
8	Belmont West	10.0\%	8.6	8.6	17.2	2.1	0.4	2.5	0.5	1.9	2.4
9	Riverbend North-Shields West	5.0\%	4.3	4.3	8.6	1.1	0.2	1.3	0.3	1.0	1.2
	Total	100.0\%									

1_Employee_Trip_Generation

Code	Land Use	Phase	Employees	Weekday			AM Peak Hour			PM Peak Hour		
				Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
110	General Light Industrial	Existing	150	1.51	1.51	3.02	0.37	0.07	0.44	0.09	0.33	0.42
110	General Light Industrial	Existing Plus Phase One	195	1.51	1.51	3.02	0.37	0.07	0.44	0.09	0.33	0.42
110	General Light Industrial	Existing Plus Full Build-out	300	1.51	1.51	3.02	0.37	0.07	0.44	0.09	0.33	0.42
110	General Light Industrial	Phase One Only	45	1.51	1.51	3.02	0.37	0.07	0.44	0.09	0.33	0.42
110	General Light Industrial	Full Build-out Only	150	1.51	1.51	3.02	0.37	0.07	0.44	0.09	0.33	0.42

Code	Land Use	Phase	Employees	Weekday			AM Peak Hour			PM Peak Hour		
				Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
110	General Light Industrial	Existing	150	227	226	453	0.25	0.04	0.15	0.06	0.22	0.14
110	General Light Industrial	Existing Plus Phase One	195	295	294	589	0.24	0.05	0.15	0.06	0.22	0.14
110	General Light Industrial	Existing Plus Full Build-out	300	453	453	906	0.25	0.05	0.15	0.06	0.22	0.14
110	General Light Industrial	Phase One Only	45	68	68	136	0.24	0.06	0.15	0.06	0.22	0.14
110	General Light Industrial	Full Build-out Only	150	226	227	453	0.24	0.05	0.15	0.06	0.22	0.14

Code	Land Use	Phase	Employees	Weekday			AM Peak Hour			PM Peak Hour		
				Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
110	General Light Industrial	Existing	150	112	112	224	28	5	33	7	24	31
110	General Light Industrial	Existing Plus Phase One	195	138	138	276	34	7	41	8	30	38
110	General Light Industrial	Existing Plus Full Build-out	300	198	198	396	49	9	58	12	43	55
110	General Light Industrial	Phase One Only	45	26	26	52	6	2	8	1	6	7
110	General Light Industrial	Full Build-out Only	150	86	86	172	21	4	25	5	19	24

[^1]2_Phase_One

No	Description	Percentage	Weekday			AM Peak Hour			PM Peak Hour		
			Enter	Exit	Total	Enter		Total	Enter	Exit	Total
1	Trimmer Springs North	10.0\%	4.2	4.2	8.4	1.0	0.2	1.2	0.3	0.9	1.2
2	SR 180 East	7.5\%	3.2	3.2	6.3	0.8	0.2	0.9	0.2	0.7	0.9
3	Reed South	7.5\%	3.2	3.2	6.3	0.8	0.2	0.9	0.2	0.7	0.9
4	Riverbend South	5.0\%	2.1	2.1	4.2	0.5	0.1	0.6	0.2	0.5	0.6
5	Rainbow Southwest	10.0\%	4.2	4.2	8.4	1.0	0.2	1.2	0.3	0.9	1.2
6	Academy South	25.0\%	10.5	10.5	21.0	2.5	0.5	3.0	0.8	2.3	3.0
7	SR 180 West	20.0\%	8.4	8.4	16.8	2.0	0.4	2.4	0.6	1.8	2.4
8	Belmont West	10.0\%	4.2	4.2	8.4	1.0	0.2	1.2	0.3	0.9	1.2
9	Riverbend North-Shields West	5.0\%	2.1	2.1	4.2	0.5	0.1	0.6	0.2	0.5	0.6
	Total	100.0\%									

Table E2.2: Path

Ltr	
A	Academy: SR
B	Newmark: SR
C	Oliver: SR 18
D	SR 180: Newi
E	Belmont: Rive

Table E2.3: Intersection

		Percentage	Weekday			AM Peak Hour			PM Peak Hour		
			Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
1	Belmont/Academy	30.0\%	12.6	12.6	25.2	3.0	0.6	3.6	0.9	2.7	3.6
2	Belmont/Oliver	75.0\%	31.5	31.5	63.0	7.5	1.5	9.0	2.3	6.8	9.0
3	SR 180/Oliver	35.0\%	14.7	14.7	29.4	3.5	0.7	4.2	1.1	3.2	4.2
4	SR 180/Academy	45.0\%	18.9	18.9	37.8	4.5	0.9	5.4	1.4	4.1	5.4

Table E2.4: Site

3_Full_Build_out
Table E3.1: Gate

No	Description	Percentage	Weekday			AM Peak Hour			PM Peak Hour		
			Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
1	Trimmer Springs North	10.0\%	14.0	14.1	28.1	3.4	0.7	4.1	0.8	3.1	3.9
2	SR 180 East	7.5\%	10.5	10.6	21.1	2.6	0.5	3.1	0.6	2.3	2.9
3	Reed South	7.5\%	10.5	10.6	21.1	2.6	0.5	3.1	0.6	2.3	2.9
4	Riverbend South	5.0\%	7.0	7.1	14.1	1.7	0.4	2.1	0.4	1.6	2.0
5	Rainbow Southwest	10.0\%	14.0	14.1	28.1	3.4	0.7	4.1	0.8	3.1	3.9
6	Academy South	25.0\%	35.0	35.3	70.3	8.5	1.8	10.3	2.0	7.8	9.8
7	SR 180 West	20.0\%	28.0	28.2	56.2	6.8	1.4	8.2	1.6	6.2	7.8
8	Belmont West	10.0\%	14.0	14.1	28.1	3.4	0.7	4.1	0.8	3.1	3.9
9	Riverbend North-Shields West	5.0\%	7.0	7.1	14.1	1.7	0.4	2.1	0.4	1.6	2.0
	Total	100.0\%									

Appendix C: Roadway Structural Integrity (Traffic Index)

Table S-3: C: Belmont: Between Oliver and Rio Vista					
Direction	With Project	Without Project			
	Impact	Significant?			
Eastbound	9.09	8.65	0.44	NO	
Westbound	9.18	8.77	0.41	NO	
Significant: ≥ 0.5					

A_Belmont west of Academy Eastbound

Vehicle Type	$\begin{aligned} & \text { EX } \\ & \text { Vol (1) } \end{aligned}$	Adj. Factor (2)	Rev EX Vol (3)	$\begin{aligned} & 20-\mathrm{YR} \\ & \text { Exp Fac (4) } \end{aligned}$	$\begin{aligned} & \text { FUT } \\ & \text { Vol (5) } \end{aligned}$	$\operatorname{Avg}(6)$	20-Year Const (7)	ESAL (8)	Project (9)	Avg + Project (10)	$\begin{aligned} & 20 \text {-Year } \\ & \text { Const (11) } \end{aligned}$	ESAL (12) with Proj
2-Axle (Class 4, 5)		1.23	6	1.13	7	7	1,380	9,660		7	1,380	9,660
3-Axle (Class 6)		1.23	6	1.13	7	7	3,680	25,760		7	3,680	25,760
4-Axle (Class 7)		1.23	0	1.13	0	0	5,880	-		0	5,880	-
5-Axle (\geq Class 8)	18	1.23	22	1.13	25	24	13,780	330,720		28	13,780	385,840
Total ESAL								366,140				421,260
TI (Calculated)								7.9				8.12
TI (Rounded)								8.				8.0
(1) Metro Traffic Data, Inc. Wed, Dec 20, 2017(2) Table A-2												
(3) Revised Existing Volume $=($ Volume $) *($ Adjustment Factor $)$												
(4) Table A-3												
(5) Future Volume $=($ Revised Existing Volume $) *($ Expansion Factor $)$												
(6) Average $=(($ Future Volume $)+($ Revised Existing Volume $)$)/2												
(7) Table 613.3A (ESAL Constants), Caltrans, Highway Design Manual (November 20, 2017)												
(8) $\mathrm{ESAL}=($ Average $) *(20-Y$ ear Constant)												
(9) Project-Generated Truck Traffic $=($ Net New Truck Traffic in Direction for Cumulative $) *($ Trip Distribution Percentage $)=(36) *(.1)=4$.												
While only 10% of the trips impact Belmont west of Academy, 40% of the trips impact Belmont west of Oliver. The higher percentage was used to ensure a conservative analysis.												
(10) (Average) + (Project-Generated Truck Traffic)												
(11) Table 613.3A (ESAL Constants), Caltrans, Highway Design Manual (November 20, 2017)												

Table A-2: Adjustment Factor Calculation	
Dec 7 (2) Dec 20 (3)	
Daily Volume (1)	
Adjustment Factor (4)	
(1) Total in Eastbound Direction	
(2) Metro Traffic Data: Thurs Dec 7, 2017	
(3) Metro Traffic Data: Wed Dec 20, 2017	
(4) (Dec 7)/(Dec 20)	

[^2]A_Belmont west of Academy Westbound

Vehicle Type	$\begin{aligned} & \text { EX } \\ & \text { Vol (1) } \end{aligned}$	Adj. Factor (2)	Rev EX Vol (3)	$\begin{aligned} & 20-\mathrm{YR} \\ & \text { Exp Fac (4) } \end{aligned}$	$\begin{aligned} & \text { FUT } \\ & \text { Vol (5) } \end{aligned}$	$\operatorname{Avg}(6)$	20-Year Const (7)	ESAL (8)	Project (9)	Avg + Project (10)	$\begin{aligned} & 20 \text {-Year } \\ & \text { Const (11) } \end{aligned}$	ESAL (12) with Proj
2-Axle (Class 4, 5)		1.30	8	1.15	9	9	1,380	12,420		9	1,380	12,420
3-Axle (Class 6)		1.30	4	1.15	5	5	3,680	18,400		5	3,680	18,400
4-Axle (Class 7)		1.30	0	1.15	0	0	5,880			0	5,880	-
5-Axle (\geq Class 8)	18	1.30	23	1.15	26	25	13,780	344,500		29	13,780	399,620
Total ESAL								375,320				430,440
TI (Calculated)								8.0				8.14
TI (Rounded)								8.				8.0
(1) Metro Traffic Data, Inc. Wed, Dec 20, 2017(2) Table A-2												
(3) Revised Existing Volume $=($ Volume $) *($ Adjustment Factor $)$												
(5) Future Volume $=($ Revised Existing Volume) $*($ Expansion Factor $)$												
(6) Average $=(($ Future Volume $)+($ Revised Existing Volume $)$)/2												
(7) Table 613.3A (ESAL Constants), Caltrans, Highway Design Manual (November 20, 2017)												
(8) $\mathrm{ESAL}=($ Average $) *(20-Y$ ear Constant)												
(9) Project-Generated Truck Traffic $=($ Net New Truck Traffic in Direction for Cumulative $) *($ Trip Distribution Percentage $)=(36) *(.1)=4$.												
While only 10% of the trips impact Belmont west of Academy, 40% of the trips impact Belmont west of Oliver. The higher percentage was used to ensure a conservative analysis.												
(10) (Average) + (Project-Generated Truck Traffic)												
(11) Table 613.3A (ESAL Constants), Caltrans, Highway Design Manual (November 20, 2017)												

Table A-5: Adjustment Factor Calculation	
Dec 7 (2) Dec 20 (3)	
Daily Volume (1)	
Adjustment Factor (4)	
(1) Total in Westbound Direction	
(2) Metro Traffic Data: Thurs Dec 7, 2017	
(3) Metro Traffic Data: Wed Dec 20, 2017	
(4) (Dec 7)/(Dec 20)	

[^3]B_Trimmer Springs South of Site Northbound

Vehicle Type	$\begin{aligned} & \text { EX } \\ & \text { Vol (1) } \end{aligned}$	Adj. Factor (2)	Rev EX Vol (3)	$\begin{aligned} & 20-\mathrm{YR} \\ & \text { Exp Fac (4) } \end{aligned}$	$\begin{aligned} & \text { FUT } \\ & \text { Vol (5) } \end{aligned}$	$\operatorname{Avg}(6)$	20-Year Const (7)	ESAL (8)	Project (9)	$\begin{aligned} & \text { Avg + } \\ & \text { Project (10) } \end{aligned}$	$\begin{aligned} & 20-Y e a r \\ & \text { Const (11) } \end{aligned}$	ESAL (12) with Proj
2-Axle (Class 4, 5)	14	1.38	19	1.00	19	19	1,380	26,220		19	1,380	26,220
3-Axle (Class 6)	1	1.38	1	1.00	1	1	3,680	3,680		1	3,680	3,680
4-Axle (Class 7)	0	1.38	0	1.00	0	0	5,880	-		0	5,880	-
5-Axle (\geq Class 8)	36	1.38	50	1.00	50	50	13,780	689,000	33	83	13,780	1,143,740
Total ESAL								718,900				1,173,640
TI (Calculated)								8.65				9.17
TI (Rounded)								8.5				9.0
(1) Metro Traffic Data, Inc. Wed, Dec 20, 2017 (2) Table A-2												
(3) Revised Existing Volume $=($ Volume $) *$ (Adjustment Factor)												
(4) Table A-3												
(5) Future Volume $=($ Revised Existing Volume $) *($ Expansion Factor $)$												
(6) Average $=(($ Future Volume $)+($ Revised Existing Volume $)$)/2												
(7) Table 613.3A (ESAL Constants), Caltrans, Highway Design Manual (November 20, 2017)												
(8) ESAL $=($ Average $) *$ (20-Year Constant)												
(9) Project-Generated Truck Traffic $=($ Net New Truck Traffic in Direction for Cumulative $) *($ Trip Distribution Percentage $)=(36) *(.9)=33$. (10) (Average) + (Project-Generated Truck Traffic)												
(11) Table 613.3A (ESAL Constants), Caltrans, Highway Design Manual (November 20, 2017)												

Table B-2: Adjustment Factor Calculation	
Dec 7(2) Dec 20 (3)	
Daily Volume (1) 637 462 Adjustment Factor (4) 1.38 (1) Total in Northbound Direction (2) Metro Traffic Data: Thurs Dec 7, 2017 (3) Metro Traffic Data: Wed Dec 20, 2017 (4) (Dec 7)/(Dec 20)	

[^4]| Vehicle Type | EX
 Vol (1) | Adj.
 Factor (2) | Rev EX
 Vol (3) | $\begin{aligned} & 20-Y R \\ & \text { Exp Fac (4) } \end{aligned}$ | $\begin{aligned} & \text { FUT } \\ & \text { Vol (5) } \end{aligned}$ | $\operatorname{Avg}(6)$ | $\begin{aligned} & 20-\text { Year } \\ & \text { Const (7) } \end{aligned}$ | ESAL (8) | Project (9) | $\begin{aligned} & \text { Avg }+ \\ & \text { Project (10) } \end{aligned}$ | $\begin{aligned} & 20-\text { Year } \\ & \text { Const (11) } \end{aligned}$ | ESAL (12)
 with Proj |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2-Axle (Class 4, 5) | 11 | 1.37 | 15 | 1.00 | 15 | 15 | 1,380 | 20,700 | 0 | 15 | 1,380 | 20,700 |
| 3-Axle (Class 6) | 0 | 1.37 | 0 | 1.00 | 0 | 0 | 3,680 | | 0 | 0 | 3,680 | |
| 4-Axle (Class 7) | 0 | 1.37 | 0 | 1.00 | 0 | 0 | 5,880 | | 0 | 0 | 5,880 | - |
| 5-Axle (\geq Class 8) | 42 | 1.37 | 57 | 1.00 | 57 | 57 | 13,780 | 785,460 | 33 | 90 | 13,780 | 1,240,200 |
| Total ESAL | | | | | | | | 806,160 | | | | 1,260,900 |
| TI (Calculated) | | | | | | | | 8.77 | | | | 9.25 |
| TI (Rounded) | | | | | | | | 9.0 | | | | 9.5 |
| (1) Metro Traffic Data, Inc. Wed, Dec 20, 2017 | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| (3) Revised Existing Volume $=($ Volume $) *$ (Adjustment Factor) | | | | | | | | | | | | |
| (4) Table A-3 | | | | | | | | | | | | |
| (5) Future Volume $=($ Revised Existing Volume $) *($ Expansion Factor $)$ | | | | | | | | | | | | |
| (6) Average $=(($ Future Volume $)+($ Revised Existing Volume) $) / 2$ | | | | | | | | | | | | |
| (7) Table 613.3A (ESAL Constants), Caltrans, Highway Design Manual (November 20, 2017) | | | | | | | | | | | | |
| (8) ESAL $=$ (Average) * (20-Year Constant) | | | | | | | | | | | | |
| (9) Project-Generated Truck Traffic $=($ Net New Truck Traffic in Direction for Cumulative $) *($ Trip Distribution Percentage $)=(36) *(.9)=33$.
 (10) (Average) + (Project-Generated Truck Traffic) | | | | | | | | | | | | |
| (11) Table 613.3A (ESAL Constants), Caltrans, Highway Design Manual (November 20, 2017) | | | | | | | | | | | | |

Table B-5: Adjustment Factor Calculation	
Dec 7 (2) Dec 20 (3)	
Daily Volume (1)	
Adjustment Factor (4)	
(1) Total Southbound Direction	
(1)	
(2) Metro Traffic Data: Thurs Dec 7, 2017	
(3) Metro Traffic Data: Wed Dec 20, 2017	
(4) (Dec 7)/(Dec 20)	

Table B-6: Expansion Factor Calculation		
	$2015(2)$	$2035(3)$
Fresno COG (1)	760	760
Exp Factor (4)	1.00	

(1) Total in Southbound Direction
(2) Fresno COG Daily (2015)
(3) Fresno COG Daily (2035)

Values: (2035) < (2015). Use (2015)
(4) (2035 Value)/(2015 Value)
C_Belmont: Oliver-Rio Vista: Eastbound

Vehicle Type	EX Vol (1)	Adj. Factor (2)	Rev EX Vol (3)	$\begin{aligned} & 20-\mathrm{YR} \\ & \text { Exp Fac (4) } \end{aligned}$	FUT Vol (5)	$\operatorname{Avg}(6)$	$\begin{aligned} & 20-\text { Year } \\ & \text { Const (7) } \end{aligned}$	ESAL (8)	Project (9)	$\begin{aligned} & \text { Avg }+ \\ & \text { Project (10) } \end{aligned}$	$\begin{aligned} & 20-\text { Year } \\ & \text { Const (11) } \end{aligned}$	ESAL (12) with Proj
2-Axle (Class 4, 5)	14	1.38	19	1.00	19	19	1,380	26,220	0	19	1,380	26,220
3-Axle (Class 6)	1	1.38	1	1.00	1	1	3,680	3,680	0	1	3,680	3,680
4-Axle (Class 7)	0	1.38	0	1.00	0	0	5,880		0	0	5,880	
5-Axle (\geq Class 8)	36	1.38	50	1.00	50	50	13,780	689,000	27	77	13,780	1,061,060
Total ESAL								718,900				1,090,960
TI (Calculated)								8.65				9.09
TI (Rounded)								8.5				9.0
(1) Metro Traffic Data, Inc. Wed, Dec 20, 2017												
(3) Revised Existing Volume $=($ Volume $) *$ (Adjustment Factor)												
(4) Table A-3												
(5) Future Volume $=($ Revised Existing Volume $) *($ Expansion Factor $)$												
(6) Average $=(($ Future Volume $)+($ Revised Existing Volume) $) / 2$												
(7) Table 613.3A (ESAL Constants), Caltrans, Highway Design Manual (November 20, 2017)												
(9) Project-Generated Truck Traffic $=($ Net New Truck Traffic in Direction for Cumulative) $) *($ Trip Distribution Percentage $)=(36) *(.75)=27$. (10) (Average) + (Project-Generated Truck Traffic)												
(11) Table 613.3A (ESAL Constants), Caltrans, Highway Design Manual (November 20, 2017)												

Table B-2: Adjustment Factor Calculation	
Dec 7(2) Dec 20 (3)	
Daily Volume (1)	
Adjustment Factor (4)	
(1) Total in Northbound Direction	
(1)	
(2) Metro Traffic Data: Thurs Dec 7, 2017	
(3) Metro Traffic Data: Wed Dec 20, 2017	
(4) (Dec 7)/(Dec 20)	

[^5]C_Belmont: Oliver-Rio Vista: Westbound

Table B-6: Expansion Factor Calculation		
	$2015(2)$	$2035(3)$
Fresno COG (1)	760	760
Exp Factor (4)	1.00	

(1) Total in Southbound Direction
(2) Fresno COG Daily (2015)
Values: (2035) < (2015). Use (2015)
(4) (2035 Value)/(2015 Value)

CIVIL ENGINEERING, INC
Kings River Packing Company Expansion

Appendix D: Roadway Segment Capacity

A_Belmont west of Academy

Scenario

Cars, Light Trucks (1) Heavy Trucks (2) Total (3) Segment LOS

Existing (2017)	1,355	68	1,525	B
Near-Term (2022)	1,422	71	1,600	B
Near-Term Plus Phase One	1,426	73	1,609	B
Cumulative (2035)	1,542	77	1,735	B
Cumulative Plus Full Build-out	1,550	82	1,755	B

(1) Two Axles, Up to Class 5
(2) Three or More Axles, Class 6 and Higher
(3) One Heavy Truck with a Passenger Car Equivalent of 2.5

B_Trimmer Springs south of Kings River Packing Co

| Scenario | Cars, Light Trucks (1) | Heavy Trucks (2) | Total (3) | Segment LOS |
| :--- | ---: | :---: | :---: | :---: | :---: |
| Existing (2017) | 1,235 | 118 | 1,530 | B |
| Near-Term (2022) | 1,235 | 118 | 1,530 | B |
| Near-Term Plus Phase One | 1,259 | 133 | 1,592 | B |
| Cumulative (2035) | 1,235 | 118 | 1,530 | B |
| Cumulative Plus Full Build-out | 1,310 | 165 | 1,723 | B |

(1) Two Axles, Up to Class 5
(2) Three or More Axles, Class 6 and Higher
(3) One Heavy Truck with a Passenger Car Equivalent of 2.5

Appendix E: Existing Intersection Turning Movements

⿵冂⿱䒑亡： Metro Traficic Data Inc．

Metro Traffic Data Inc．
310 N．Irwin Street－Suite 20 Hanford，CA 93230

800－975－6938 Phone／Fax
www．metrotrafficdata．com

Turning Movement Report

Prepared For
Precision Civil Engineering，Inc．
1234 ＂O＂Street
Fresno，CA 93721

LOCATION	Kings Canyon Rd＠Rio Vista Ave	LATITUDE	Fresno
COUNTY	LONGITUDE	-119.4771	
COLLECTION DATE	Thursday，December 7，2017	WEATHER	Clear

	Northbound				Southbound				Eastbound				Westbound			
Time	Left	Thru	Right	Trucks												
7：00 AM－7：15 AM	0	0	0	0	3	0	2	1	0	113	0	5	0	169	15	6
7：15 AM－7：30 AM	0	0	0	0	7	0	2	1	1	139	0	7	0	168	9	6
7：30 AM－7：45 AM	0	0	0	0	1	0	5	0	1	156	0	6	0	185	7	4
7：45 AM－8：00 AM	0	0	0	0	2	0	2	0	2	119	0	7	0	153	8	8
8：00 AM－8：15 AM	0	0	0	0	4	0	2	2	1	109	0	10	0	141	5	8
8：15 AM－8：30 AM	0	0	0	0	1	0	2	2	3	112	0	12	0	139	1	1
8：30 AM－8：45 AM	0	0	0	0	1	0	3	0	7	135	0	11	0	125	2	9
8：45 AM－9：00 AM	0	0	0	0	3	0	1	1	3	93	0	10	0	112	2	11
TOTAL	0	0	0	0	22	0	19	7	18	976	0	68	0	1192	49	53

	Northbound				Southbound				Eastbound				Westbound			
Time	Left	Thru	Right	Trucks												
4：00 PM－4：15 PM	0	0	0	0	5	0	4	3	5	175	0	4	0	173	1	1
4：15 PM－4：30 PM	0	0	0	0	6	0	4	1	0	196	0	7	0	153	1	2
4：30 PM－4：45 PM	0	0	0	0	3	0	2	0	0	222	0	7	0	135	1	9
4：45 PM－5：00 PM	0	0	0	0	9	0	5	1	1	208	0	4	0	145	3	7
5：00 PM－5：15 PM	0	0	0	0	3	0	2	0	2	190	0	5	0	165	0	3
5：15 PM－5：30 PM	0	0	0	0	6	0	3	1	0	180	0	4	0	155	2	3
5：30 PM－5：45 PM	0	0	0	0	4	0	2	2	2	189	0	7	0	143	2	5
5：45 PM－6：00 PM	0	0	0	0	4	0	0	1	1	174	0	4	0	89	0	1
TOTAL	0	0	0	0	40	0	22	9	11	1534	0	42	0	1158	10	31

	Northbound				Southbound				Eastbound				Westbound			
PEAK HOUR	Left	Thru	Right	Trucks												
7：00 AM－8：00 AM	0	0	0	0	13	0	11	2	4	527	0	25	0	675	39	24
4：00 PM－5：00 PM	0	0	0	0	23	0	15	5	6	801	0	22	0	606	6	19

⿵冂⿱䒑亡： Metro Traficic Data Inc．

Metro Traffic Data Inc．
310 N．Irwin Street－Suite 20 Hanford，CA 93230

800－975－6938 Phone／Fax www．metrotrafficdata．com

Turning Movement Report

Prepared For：
Precision Civil Engineering，Inc．

LOCATION	Kings Canyon Rd＠Reed Ave	LATITUDE	Fresno
COUNTY	LONGITUDE		
COLLECTION DATE	Thursday，December 7，2017	WEATHER	-119.4573

	Northbound				Southbound				Eastbound				Westbound			
Time	Left	Thru	Right	Trucks												
7：00 AM－7：15 AM	0	38	4	3	47	59	0	7	0	0	0	0	9	3	112	3
7：15 AM－7：30 AM	0	60	4	1	65	81	0	6	0	0	0	0	10	2	89	2
7：30 AM－7：45 AM	0	53	4	3	52	95	0	4	0	0	0	0	9	4	81	4
7：45 AM－8：00 AM	0	29	6	5	49	67	0	5	0	0	0	0	7	2	93	2
8：00 AM－8：15 AM	0	58	1	2	43	56	0	8	0	0	0	0	4	4	63	4
8：15 AM－8：30 AM	0	39	3	0	51	49	0	9	0	0	0	0	4	0	64	0
8：30 AM－8：45 AM	0	49	4	6	42	71	0	11	0	0	0	0	6	4	60	4
8：45 AM－9：00 AM	0	41	4	8	41	58	0	6	0	0	0	0	3	3	55	3
TOTAL	0	367	30	28	390	536	0	56	0	0	0	0	52	22	617	22

	Northbound				Southbound				Eastbound				Westbound			
Time	Left	Thru	Right	Trucks												
4：00 PM－4：15 PM	0	221	26	4	205	194	0	18	0	0	0	0	6	4	207	4
4：15 PM－4：30 PM	0	90	20	4	146	114	0	9	0	0	0	0	5	4	129	4
4：30 PM－4：45 PM	0	110	18	8	141	117	0	7	0	0	0	0	5	9	113	9
4：45 PM－5：00 PM	0	68	10	1	87	75	0	4	0	0	0	0	3	3	80	3
5：00 PM－5： 15 PM	0	57	4	2	97	89	0	5	0	0	0	0	5	1	70	1
5：15 PM－5：30 PM	0	83	10	0	89	75	0	3	0	0	0	0	4	1	72	1
5：30 PM－5：45 PM	0	87	8	2	111	98	0	6	0	0	0	0	1	7	62	7
5：45 PM－6：00 PM	0	47	6	2	82	62	0	6	0	0	0	0	5	2	45	2
TOTAL	0	763	102	23	958	824	0	58	0	0	0	0	34	31	778	31

	Northbound				Southbound				Eastbound				Westbound			
PEAK HOUR	Left	Thru	Right	Trucks												
7：00 AM－8：00 AM	0	180	18	12	213	302	0	22	0	0	0	0	35	11	375	11
4：00 PM－5：00 PM	0	489	74	17	579	500	0	38	0	0	0	0	19	20	529	20

	PHF	Trucks
AM		
PM	0.912	4.0%
	0.640	3.4%

3: SR 180/Oliver-Rainbow: Existing

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
AM Volume	48	472	5	6	620	77	61	9	48	11	1	5

3: SR 180/Oliver-Rainbow: Existing

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
PM Volume	16	735	42	51	539	22	10	1	18	54	4	55

Derive Final TM:				\because		0	In		Out				
(1) Input 8 Links				S			113		39				
(2) Balance, so	0			$\stackrel{\square}{0}$	Initial	45	7	61	26				
In-Out is 0 .				\square	Final	55	4	54	0				
(3) Copy Initial to Final and				\sim				\longrightarrow		SR 180	WB		
adjust Final, so	Out	604	-46	0	今					Final	Initial		
inbound and			33	16						22	32		0
outbound	In	793	679	735	\Rightarrow		N]	539	500	612	In
errors in light	0		82	42						51	80		
orange become			Initial	Final					$\sqrt{ }$	0	-51	807	Out
0 . The resulting		SR 180	EB			\checkmark		\Rightarrow					
TM's on top go													
into a separate					0	10	1	18	Final	\%			
spreadsheet for					72	13	0	16	Initial	3			
TM's for all					97		29			.			
scenarios.					Out		In	0		๕			

Metro Traffic Data Inc.
310 N. Irwin Street - Suite 20
Hanford, CA 93230

800-975-6938 Phone/Fax
www.metrotrafficdata.com

24 Hour Volume Report

Prepared For:
Precision Civil Engineering, Inc.
1234 "O" Street
Fresno, CA 93721

LOCATION \qquad LATITUDE 36.7818222
LONGITUDE \qquad
COUNTY \qquad
WEATHER \qquad
COLLECTION DATE \qquad
NUMBER OF LANES \qquad

	Northbound					Southbound					Hourly Totals
Hour	1st	2nd	3rd	4th	Total	1st	2nd	3rd	4th	Total	
12:00 AM	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	0	3	0	0	3	2	0	0	0	2	5
2:00 AM	1	0	2	0	3	0	0	0	0	0	3
3:00 AM	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	0	0	0	2	2	0	0	0	1	1	3
5:00 AM	2	1	6	12	21	0	0	0	1	1	22
6:00 AM	16	15	22	53	106	0	0	7	6	13	119
7:00 AM	63	43	19	9	134	11	1	4	1	17	151
8:00 AM	11	7	7	8	33	12	7	5	0	24	57
9:00 AM	8	13	4	8	33	2	13	15	8	38	71
10:00 AM	8	7	12	18	45	12	6	9	3	30	75
11:00 AM	13	13	6	7	39	12	3	8	7	30	69
12:00 PM	9	3	4	4	20	31	10	8	13	62	82
1:00 PM	3	12	11	7	33	7	4	5	7	23	56
2:00 PM	9	12	10	9	40	7	15	16	20	58	98
3:00 PM	8	11	9	11	39	27	31	38	20	116	155
4:00 PM	11	3	5	2	21	24	16	20	19	79	100
5:00 PM	4	8	2	7	21	17	13	19	27	76	97
6:00 PM	8	5	4	2	19	51	15	6	5	77	96
7:00 PM	1	5	1	9	16	0	1	3	0	4	20
8:00 PM	0	0	2	0	2	1	3	2	4	10	12
9:00 PM	1	0	3	0	4	3	0	2	0	5	9
10:00 PM	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	0	0	3	0	3	0	0	0	2	2	5
Total	48.8\%				637	51.2\%				668	
	1305										
AM\%	44.1\%	AM Peak 206			6:30 am to 7:30 am			AM P.H.F. 0.70			
PM\%	55.9\%	PM Peak 155			3:15 pm to 4:15 pm			PM P.H.F.		0.82	

งəગ!чәл ๒૦ \#

Appendix F: Intersection Turning Movement, LOS, and Queuing Results

Table 1-1: SR 180/Rio Vista AM: Volume, LOS, Queuing

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing Analysis												
Total Volume	4	527			675	39				13		11
Truck Volume	0	53			68	4				1		1
PCE Volume	4	607			777	45				15		13
Delay, LOS										31.5 D		
Queue (feet)											25	
Near-Term Analysis												
Total Volume	5	611	6	7	763	44	79	12	62	13	1	11
Truck Volume	0	61	0	1	77	5	8	4	6	1	0	1
PCE Volume	5	703	6	9	879	52	91	18	71	15	1	13
Delay, LOS	10.4 B			9.4 A			23.2 C	14.8 B	14.8 B	22.6 C	12.9 B	12.9 B
Queue (feet)	25			25			50	25	25	25	25	25

Near-Term Plus Phase One Analysis												
Total Volume						2				1		
Truck Volume						1				0		
PCE Volume	5	703	6	9	879	56	91	18	71	16	1	13
Delay, LOS	10.4 B			9.4 A			23.2 C	14.8 B	14.8 B	22.8 C	12.9 B	12.9 B
Queue (feet)	25			25			50	25	25	25	25	25
Cumulative Analysis												

Total Volume	6	764	642	7	932	61	111	16	87	13	1	11
Truck Volume	0	77	65	0	94	6	11	5	9	1	0	1
PCE Volume	6	880	740	7	1073	70	128	24	101	15	1	13
Delay, LOS	11.7 B			15.8 C			44.2 E	19.3 C	19.3 C	30.9 q	15.6	15.6 C
Queue (feet)	25			25			100	50	50	25	25	25

Cumulative Plus Full Build-out Analysis												
Total Volume						8				2		
Truck Volume						4				1		
PCE Volume	6	880	740	7	1073	84	128	24	101	19	1	13
Delay, LOS	11.8 B			15.8 C			44.2 E	19.4 C	19.4 C	32.1 D	15.8	15.8 C
Queue (feet)	25			25			100	50	50	25	25	25

PCE Volume: Passenger Car Equivalent Volume: 1 Truck $=2.5$ Passenger Cars
Sources: Metro Traffic Data, Fresno COG, Synchro 9 Per Highway Capacity Manual (2010)

Table 1-2: SR 180/Rio Vista AM: Growth Projections

	EB	WB	NB	SB
Existing 2015	339	599	40	57
Near-Term 2022	392	678	40	57
Near-Term Factor	1.16	1.13	1	1
Cumulative 2035	490	824	40	57
Cumulative Factor	1.45	1.38	1	1

Source: Fresno COG: Peak Hour Specific Approach Volume
(1) If (2035 Volume) $<(2015$ Volume), then 2015 Volume was also used for the 2035 Volume.
(2) If no Minor Roadway Volume Provided, then Major Roadway Volume was also used for Minor Roadway Approaches.
(3) Factors were applied to Total and Truck Volumes for Near-Term and Cumulative Analyses.
(4) For Near-Term, missing volumes and projections came from SR 180/Oliver-Rainbow.

Table 1-3: SR 180/Rio Vista PM: Volume, LOS, Queuing

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing Analysis												
Total Volume	6	801			606	6				23		15
Truck Volume	0	80			61	1				4		2
PCE Volume	6	921			698	8				29		18
Delay, LOS	0.1 A	0.2 A									41.3 E	
Queue (feet)	25										50	
Near-Term Analysis												
Total Volume	7	897	46	60	721	7	13	1	24	23	4	15
Truck Volume	0	90	4	6	73	1	1	1	3	4	2	2
PCE Volume	7	1032	52	69	831	9	15	3	29	29	7	18
Delay, LOS	10.0 A			12.2 B			27.3 D	14.6 B	14.6 B	30.0 D	18.0 O	18.0 C
Queue (feet)	25			25			25	25	25	25	25	25
Near-Term Plus Phase One Analysis												
Total Volume						1				2		
Truck Volume						0				0		
PCE Volume	7	1032	52	69	831	10	15	3	29	31	7	18
Delay, LOS	10.0 A			12.2 B			27.3 D	14.6 B	14.6 B	30.4 D	18.0 O	18.0 C
Queue (feet)	25			25			25	25	25	25	25	25
Cumulative Analysis												
Total Volume	8	1065	53	76	927	11	19	2	34	23	4	15
Truck Volume	0	106	5	7	93	2	2	2	4	4	2	2
PCE Volume	8	1224	61	87	1067	14	22	5	40	29	7	18
Delay, LOS	11.3 B			14.5 B			40.2 E	18.1 C	18.1 C	52.8 F	25.9 D	25.9 D
Queue (feet)	25			25			25	25	25	50	25	25
Cumulative Plus Full Build-out Analysis												
Total Volume						2				8		
Truck Volume						1				3		
PCE Volume	8	1224	61	87	1067	18	22	5	40	42	7	18
Delay, LOS	11.3 B			14.5 B			40.2 E	18.1 C	18.1 C	62.7 F	25.9 D	25.9 D
Queue (feet)	25			25			25	25	25	50	25	25

PCE: Passenger Car Equivalent: 1 Truck $=2.5$ Passenger Cars
Sources: Metro Traffic Data, Fresno COG, Synchro 9 Per Highway Capacity Manual (2010)

Table 1-4: SR 180/Rio Vista PM: Growth Projections

	EB	WB	NB	SB
Existing 2015	675	429	60	50
Near-Term 2022	753	509	60	50
Near-Term Factor	1.12	1.19	1	1
Cumulative 2035	899	658	60	50
Cumulative Factor	1.33	1.53	1	1

Source: Fresno COG: Peak Hour Specific Approach Volume
(1) If (2035 Volume) $<(2015$ Volume), then 2015 Volume was also used for the 2035 Volume.
(2) If no Minor Roadway Volume Provided, then Major Roadway Volume was also used for Minor Roadway Approaches.
(3) Factors were applied to Total and Truck Volumes for Near-Term and Cumulative Analyses.
(4) For Near-Term, missing volumes and projections came from SR 180/Oliver-Rainbow.

Table 2-1: SR 180/Reed AM: Volume, LOS, Queuing

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing Analysis												
Total Volume				46		375		180	18	213	302	
Truck Volume				5		2		2	2	1	0	
PCE Volume				54		378		183	21	215	302	
Delay, LOS					21.1 C		12.6 B		8.3 A	14.4 B	17.2 C	
Queue (feet)												
Near-Term Analysis												
Total Volume				48		390		216	22	251	356	
Truck Volume				5		2		2	2	1	0	
PCE Volume				56		393		219	25	253	356	
Delay, LOS						8.1	A					
Queue (feet)		50	50	25	75		50		25			
Near-Term Plus Phase One Analysis												
Total Volume						1		1		0	1	
Truck Volume						1		0		0	0	
PCE Volume				56		396		220	25	253	357	
Delay, LOS						8.1	A					
Queue (feet)		50	50	25	75		50		25			
Cumulative Analysis												
Total Volume				52		420		283	28	322	456	
Truck Volume				6		2		3	3	2	0	
PCE Volume				61		423		288	33	325	456	
Delay, LOS						8.5						
Queue (feet)		50	50	50	75		75		25			
Cumulative Plus Full Build-out Analysis												
Total Volume						4		4		1	1	
Truck Volume						2		2		0	1	
PCE Volume				61		430		295	33	326	459	
Delay, LOS	8.6 A											
Queue (feet)		50	50	50	75		75		25			

PCE: Passenger Car Equivalent: 1 Truck $=2.5$ Passenger Cars
Sources: Metro Traffic Data, Fresno COG, Synchro 9 Per Highway Capacity Manual (2010)
NT, CUM: WBR becomes WBT, NBT beccomes NBL, SBL becomes EBT, SBT becomes EBR
Table 2-2: SR 180/Reed AM: Growth Projections

	EB	WB	NB	SB
Existing 2015		333	272	302
Near-Term 2022		347	327	356
Near-Term Factor		1.04	1.2	1.18
Cumulative 2035		373	428	455
Cumulative Factor	1.12	1.57	1.51	

Source: Fresno COG: Peak Hour Specific Approach Volume
(1) If (2035 Volume) $<(2015$ Volume $)$, then 2015 Volume was also used for the 2035 Volume.
(2) If no Minor Roadway Volume Provided, then Major Roadway Volume was also used for Minor Roadway Approaches.
(3) Factors were applied to Total and Truck Volumes for Near-Term and Cumulative Analyses.

Table 2-3: SR 180/Reed PM: Volume, LOS, Queuing

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing Analysis												
Total Volume				39		529		489	74	579	500	
Truck Volume				4		0		1	8	2	2	
PCE Volume				45		529		491	86	582	503	
Delay, LOS				302.6 F			281.9 F			423.4F		
Queue (feet)												
Near-Term Analysis												
Total Volume				43		587		572	87	648	560	
Truck Volume				4		0		1	9	2	2	
PCE Volume				49		587		574	101	651	563	
Delay, LOS						10.8						
Queue (feet)		125	75	50	125		125		50			
Near-Term Plus Phase One Analysis												
Total Volume						0		1		1	1	
Truck Volume						0		0		0	0	
PCE Volume				49		587		575	101	652	564	
Delay, LOS						10.8						
Queue (feet)		125	75	50	125		125		50			
Cumulative Analysis												
Total Volume				51		693		724	110	787	680	
Truck Volume				5		0		1	12	3	3	
PCE Volume				59		693		726	128	792	685	
Delay, LOS						12.6						
Queue (feet)		175	75	50	150		150		50			
Cumulative Plus Full Build-out Analysis												
Total Volume						1		1		4	4	
Truck Volume						0		1		1	2	
PCE Volume				59		694		729	128	798	692	
Delay, LOS						12.6						
Queue (feet)		175	75	50	150		150		50			

PCE: Passenger Car Equivalent: 1 Truck $=2.5$ Passenger Cars
Sources: Metro Traffic Data, Fresno COG, Synchro 9 Per Highway Capacity Manual (2010)
NT, CUM: WBR becomes WBT, NBT beccomes NBL, SBL becomes EBT, SBT becomes EBR
Table 2-4: SR 180/Reed PM: Growth Projections

	EB	WB	NB	SB
Existing 2015		186	277	596
Near-Term 2022		206	324	670
Near-Term Factor		1.11	1.17	1.12
Cumulative 2035		243	411	808
Cumulative Factor	1.31	1.48	1.36	

Source: Fresno COG: Peak Hour Specific Approach Volume
(1) If (2035 Volume) $<(2015$ Volume $)$, then 2015 Volume was also used for the 2035 Volume.
(2) If no Minor Roadway Volume Provided, then Major Roadway Volume was also used for Minor Roadway Approaches.
(3) Factors were applied to Total and Truck Volumes for Near-Term and Cumulative Analyses.

Table 3-1: SR 180/Oliver-Rainbow AM: Volume, LOS, Queuing

Total Volume	48	472	5	6	620	77	61	9	48	11	1	5
Truck Volume	6	48	0	1	62	8	6	3	5	1	0	0
PCE Volume	57	544	5	8	713	89	70	14	56	13	1	5
Delay, LOS	10.1 B			8.7 A			234.8F			68.1 F		
Queue (feet)	25			25			250			25		
Near-Term Analysis												
Total Volume	54	533	6	7	701	87	79	12	62	11	1	5
Truck Volume	7	54	0	1	70	9	8	4	6	1	0	0
PCE Volume	65	614	6	9	806	101	91	18	71	13	1	5
Delay, LOS	10.9 B			9.0 A			26.8 D	15.3 C	15.3 C	22.9	13.4 B	13.4 B
Queue (feet)	25			25			50	25	25	25	25	25

Near-Term Plus Phase One Analysis												
Total Volume	3							3			0	1
Truck Volume	1							1			0	0
PCE Volume	70	614	6	9	806	101	91	23	71	13	1	6
Delay, LOS	10.9 B			9.0 A			27.5 D	15.4 C	15.4 C	23.1	13.1 B	13.1 B
Queue (feet)	25			25			50	25	25	25	25	25

Cumulative Analysis														
Total Volume	65	642	7	8	843	105	111	16	87	11	1	5		
Truck Volume	8	65	0	1	84	11	11	5	9	1	0	5		
PCE Volume	77	740	7	10	969	122	128	24	101	13	1	13		
Delay, LOS	12.4 B			9.6 A			58.3 F	20.6	20.6 C	30.9 D	14.2 B	14.2 B		
Queue (feet)	25			25			125	50	50	25	25	25		

Cumulative Plus Full Build-out Analysis												
Total Volume	11							9			2	2
Truck Volume	4							3			0	1
PCE Volume	94	740	7	10	969	122	128	38	101	13	3	17
Delay, LOS	12.6 B			9.6 A			71.2 F	22.0 C	22.0 C	32.4 D	14.2 B	14.2 B
Queue (feet)	25			25			150	50	50	25	25	25

PCE: Passenger Car Equivalent: 1 Truck $=2.5$ Passenger Cars
Sources: Metro Traffic Data, Fresno COG, Synchro 9 Per Highway Capacity Manual (2010)

Table 3-2: SR 180/Oliver-Rainbow AM: Growth Projections

	EB	WB	NB	SB
Existing 2015	338	631	34	57
Near-Term 2022	381	710	44	57
Near-Term Factor	1.13	1.13	1.29	1
Cumulative 2035	460	856	62	57
Cumulative Factor	1.36	1.36	1.82	1

Source: Fresno COG: Peak Hour Specific Approach Volume
(1) If (2035 Volume) $<(2015$ Volume), then 2015 Volume was also used for the 2035 Volume.
(2) If no Minor Roadway Volume Provided, then Major Roadway Volume was also used for Minor Roadway Approaches.
(3) Factors were applied to Total and Truck Volumes for Near-Term and Cumulative Analyses.

Table 3-3: SR 180/Oliver-Rainbow PM: Volume, LOS, Queuing

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing Analysis												
Total Volume	16	735	42	51	539	22	10	1	18	54	4	55
Truck Volume	1	74	4	5	54	2	1	1	2	2	2	6
PCE Volume	18	846	48	59	620	25	12	3	21	57	7	64
Delay, LOS	9.2 A			10.7 B			83.8 F			418.1F		
Queue (feet)	25			25			50			300		
Near-Term Analysis												
Total Volume	17	801	46	60	631	26	13	1	24	54	4	55
Truck Volume	1	81	4	6	63	2	1	1	3	2	2	6
PCE Volume	19	923	52	69	726	29	15	3	29	57	7	64
Delay, LOS	9.7 A			11.4 B			26.7 D	14.1 B	14.1 B	30.6 D	14.3 B	14.3 B
Queue (feet)	25			25			25	25	25	50	25	25

Near-Term Plus Phase One Analysis												
Total Volume	1							0			3	3
Truck Volume	0							0			1	1
PCE Volume	20	923	52	69	726	29	15	3	29	57	12	69
Delay, LOS	9.7 A			11.4 B			26.9 D	14.1 B	14.1 B	30.7 D	14.3 B	14.3 B
Queue (feet)	25			25			25	25	25	50	25	25

Cumulative Analysis												
Total Volume	20	926	53	76	803	33	19	2	34	54	4	55
Truck Volume	1	93	5	7	80	3	2	2	4	2	2	64
PCE Volume	22	1066	61	87	923	38	22	5	40	57	7	151
Delay, LOS	10.7 B			12.8 B			48.1 E	16.8 C	16.8 C	54.4 F	19.2 C	19.2 C
Queue (feet)	25			25			25	25	25	75	50	50

Cumulative Plus Full Build-out Analysis												
Total Volume	3							2			8	10
Truck Volume	1							0			3	4
PCE Volume	27	1066	61	87	923	38	22	7	40	57	20	167
Delay, LOS	10.8 B			12.8 B			53.7 F	16.9 C	16.9 C	55.2 F	20.0 C	20.0 C
Queue (feet)	25			25			25	25	25	75	75	75

PCE: Passenger Car Equivalent: 1 Truck $=2.5$ Passenger Cars
Sources: Metro Traffic Data, Fresno COG, Synchro 9 Per Highway Capacity Manual (2010)

Table 3-4: SR 180/Oliver-Rainbow PM: Growth Projections

	EB	WB	NB	SB
Existing 2015	679	466	44	50
Near-Term 2022	740	546	58	50
Near-Term Factor	1.09	1.17	1.32	1
Cumulative 2035	853	694	83	50
Cumulative Factor	1.26	1.49	1.89	1

Source: Fresno COG: Peak Hour Specific Approach Volume
(1) If (2035 Volume) $<(2015$ Volume), then 2015 Volume was also used for the 2035 Volume.
(2) If no Minor Roadway Volume Provided, then Major Roadway Volume was also used for Minor Roadway Approaches.
(3) Factors were applied to Total and Truck Volumes for Near-Term and Cumulative Analyses.

Table 4-1: Trimmer Springs/Site Access AM: Volume, LOS, Queuing

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing Analysis												
Total Volume				9		1		84	50	6	8	
Truck Volume				3		0		8	26	3	1	
PCE Volume				14		1		96	89	11	10	
Delay, LOS				10.2 B						7.9 A		
Queue (feet)					25						25	
Near-Term Analysis												
Total Volume				9		1		84	50	6	8	
Truck Volume				3		0		8	26	3	1	
PCE Volume				14		1		96	89	11	10	
Delay, LOS				10.2 B		10.2 B				7.9 A		
Queue (feet)				25		25				25		
Near-Term Plus Phase One Analysis												
Total Volume				4		0			14	2		
Truck Volume				2		0			5	1		
PCE Volume				21		1		96	111	15	10	
Delay, LOS				10.5 B						8.0 A		
Queue (feet)				25		25				25	25	
Cumulative Analysis												
Total Volume				9		1		84	50	6	8	
Truck Volume				3		0		8	26	3	1	
PCE Volume				14		1		96	89	11	10	
Delay, LOS				10.2 B						7.9 A		
Queue (feet)				25								
Cumulative Plus Full Build-out Analysis												
Total Volume				10		1			50	5		
Truck Volume				3		1			19	2		
PCE Volume				29		4		96	168	19	10	
Delay, LOS				11.0 B						8.3 A		
Queue (feet)				25					25			

PCE: Passenger Car Equivalent: 1 Truck $=2.5$ Passenger Cars
Sources: Metro Traffic Data, Fresno COG, Synchro 9 Per Highway Capacity Manual (2010)

Table 4-2: Trimmer Springs/Site Access AM: Growth Projections

	EB	WB	NB	SB
Existing 2015		1	44	61
Near-Term 2022		1	44	61
Near-Term Factor		1	1	1
Cumulative 2035		1	44	61
Cumulative Factor	1	1	1	

Source: Fresno COG: Peak Hour Specific Approach Volume
(1) If (2035 Volume) $<(2015$ Volume $)$, then 2015 Volume was also used for the 2035 Volume.
(2) If no Minor Roadway Volume Provided, then Major Roadway Volume was also used for Minor Roadway Approaches.
(3) Factors were applied to Total and Truck Volumes for Near-Term and Cumulative Analyses.

Table 4-3: Trimmer Springs/Site Access PM: Volume, LOS, Queuing

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing Analysis												
Total Volume				44		5		26	13	1	72	
Truck Volume				22		2		3	6	1	7	
PCE Volume				77		8		31	22	3	83	
Delay, LOS				10.0 B						7.4 A		
Queue (feet)					25							
Near-Term Analysis												
Total Volume				44		5		26	13	1	72	
Truck Volume				22		2		3	6	1	7	
PCE Volume				77		8		31	22	3	83	
Delay, LOS				10.0 B						7.4 A		
Queue (feet)					25							
Near-Term Plus Phase One Analysis												
Total Volume				13		2			4	0		
Truck Volume				5		1			1	0		
PCE Volume				98		12		31	28	3	83	
Delay, LOS				10.3 B						7.5 A		
Queue (feet)					25							
Cumulative Analysis												
Total Volume				44		5		26	13	1	72	
Truck Volume				22		2		3	6	1	7	
PCE Volume				77		8		31	22	3	83	
Delay, LOS				10.0 B						7.4 A		
Queue (feet)					25							
Cumulative Plus Full Build-out Analysis												
Total Volume				45		5			12	1		
Truck Volume				17		2			5	0		
PCE Volume				148		16		31	42	4	83	
Delay, LOS				10.9 B						7.5 A		
Queue (feet)					25							

PCE: Passenger Car Equivalent: 1 Truck $=2.5$ Passenger Cars
Sources: Metro Traffic Data, Fresno COG, Synchro 9 Per Highway Capacity Manual (2010)

Table 4-4: Trimmer Springs/Site Access PM: Growth Projections

	EB	WB	NB	SB
Existing 2015		1	65	55
Near-Term 2022		1	65	55
Near-Term Factor		1	1	1
Cumulative 2035		1	65	55
Cumulative Factor	1	1	1	

Source: Fresno COG: Peak Hour Specific Approach Volume
(1) If (2035 Volume) $<(2015$ Volume $)$, then 2015 Volume was also used for the 2035 Volume.
(2) If no Minor Roadway Volume Provided, then Major Roadway Volume was also used for Minor Roadway Approaches.
(3) Factors were applied to Total and Truck Volumes for Near-Term and Cumulative Analyses.

CIVIL ENGINEERING, INC
Kings River Packing Company Expansion

Appendix G: Existing Analysis AM (Synchro)

Intersection						
Int Delay, s/veh	0.6					
Movement		EBL	EBT			
Lane Configurations		W				
Traffic Vol, veh/h	4	607	777	45	15	13
Future Vol, veh/h	4	607	777	45	15	13
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, $\%$	4	4	4	4	4	4
Mvmt Flow	4	682	873	51	17	15

	7		4	p		\dagger	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	\%		\uparrow	F'	${ }^{7}$	\uparrow	
Sign Control	Stop		Stop			Yield	
Traffic Volume (vph)	54	378	183	21	215	302	
Future Volume (vph)	54	378	183	21	215	302	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	
Hourly flow rate (vph)	59	415	201	23	236	332	
Direction, Lane \#	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total (vph)	474	201	23	236	332		
Volume Left (vph)	59	0	0	236	0		
Volume Right (vph)	415	0	23	0	0		
Hadj (s)	-0.43	0.07	-0.63	0.57	0.07		
Departure Headway (s)	5.5	6.9	6.2	7.0	6.4		
Degree Utilization, x	0.72	0.39	0.04	0.46	0.59		
Capacity (veh/h)	632	480	535	501	536		
Control Delay (s)	21.1	13.1	8.3	14.4	17.2		
Approach Delay (s)	21.1	12.6		16.1			
Approach LOS	C	B		C			
Intersection Summary							
Delay			17.3				
Level of Service			C				
Intersection Capacity Utilization			57.9\%	ICU Level of Service			B
Analysis Period (min)			15				

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\ddagger			\&			\ddagger	
Traffic Vol, veh/h	57	544	5	8	713	89	70	14	56	13	1	5
Future Vol, veh/h	57	544	5	8	713	89	70	14	56	13	1	5
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	4	4	4	4	4	4	4	4	4	4	4	4
Mvmt Flow	62	591	5	9	775	97	76	15	61	14	1	5

HCM 2010 TWSC
12: Timmer Springs/Trimmer Springs \& Site Access

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	14		1			
Traffic Vol, veh/h	14	1	96	89	11	10
Future Vol, veh/h	14	1	96	89	11	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	70	70	70	70	70	70
Heavy Vehicles, $\%$	12	12	12	12	12	12
Mvmt Flow	20	1	137	127	16	14

CIVIL ENGINEERING, INC
Kings River Packing Company Expansion

Appendix H: Existing Analysis PM (Synchro)

Intersection						
Int Delay, s/veh	1.2					
Movement		EBL	EBT	WBT	WBR	SBL
Lane Configurations		A	6		SBR	
Traffic Vol, veh/h	6	921	698	8	29	18
Future Vol, veh/h	6	921	698	8	29	18
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	98	98	98	98	98	98
Heavy Vehicles, $\%$	3	3	3	3	3	3
Mvmt Flow	6	940	712	8	30	18

	\checkmark					\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	M		个	F'	\%	\uparrow	
Sign Control	Stop		Stop			Yield	
Traffic Volume (vph)	45	529	491	86	582	503	
Future Volume (vph)	45	529	491	86	582	503	
Peak Hour Factor	0.64	0.64	0.64	0.64	0.64	0.64	
Hourly flow rate (vph)	70	827	767	134	909	786	
Direction, Lane \#	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total (vph)	897	767	134	909	786		
Volume Left (vph)	70	0	0	909	0		
Volume Right (vph)	827	0	134	0	0		
Hadj (s)	-0.49	0.05	-0.65	0.55	0.05		
Departure Headway (s)	6.5	7.8	7.1	8.2	7.7		
Degree Utilization, x	1.62	1.67	0.27	2.06	1.67		
Capacity (veh/h)	561	464	499	448	474		
Control Delay (s)	302.6	329.1	11.5	503.4	331.0		
Approach Delay (s)	302.6	281.9		423.4			
Approach LOS	F	F		F			
Intersection Summary							
Delay			355.9				
Level of Service			F				
Intersection Capacity Utilization			103.3\%	ICU Level of Service			G
Analysis Period (min)			15				

Intersection												
Int Delay, s/veh 32.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			\$			¢	
Traffic Vol, veh/h	18	846	48	59	620	25	12	3	21	57	7	64
Future Vol, veh/h	18	846	48	59	620	25	12	3	21	57	7	64
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	4	4	4	4	4	4	,	4	4	4	4	4
Mvmt Flow	20	920	52	64	674	27	13	3	23	62	8	70

Major/Minor	Major1		Major2					Minor1			Minor2			
Conflicting Flow All	701	0	0		972	0		0	1839	1814	946	1814	1827	688
Stage 1	-	-	-		-	-		-	985	985	-	816	816	
Stage 2	-	-	-		-	-		-	854	829		998	1011	
Critical Hdwy	4.14	-	-		4.14	-		-	7.14	6.54	6.24	7.14	6.54	6.24
Critical Hdwy Stg 1	-	-	-		-	-		-	6.14	5.54		6.14	5.54	
Critical Hdwy Stg 2		-	-		-	-		-	6.14	5.54		6.14	5.54	
Follow-up Hdwy	2.236	-	-		2.236	-		-	3.536	4.036	3.336	3.536	4.036	3.336
Pot Cap-1 Maneuver	887	-	-		701	-		-	57	77	314	~ 60	76	443
Stage 1	-	-	-		-	-		-	296	324	-	368	388	
Stage 2	-	-	-		-	-		-	351	382	-	291	315	
Platoon blocked, \%		-	-			-		-						
Mov Cap-1 Maneuver	887	-	-		701	-		-	37	62	314	~ 46	61	443
Mov Cap-2 Maneuver	-	-	-		-	-		-	37	62	-	~ 46	61	
Stage 1	-	-	-		-	-		-	281	308		350	330	
Stage 2	-	-	-		-	-			246	325		254	299	
Approach	EB				WB				NB			SB		
HCM Control Delay, s	0.2				0.9				83.8			\$ 418.1		
HCM LOS									F			F		
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	R SBLn1						
Capacity (veh/h)	82	887	-	-	701	-		- 85						
HCM Lane V/C Ratio	0.477	0.022	-	-	0.091	-	-	- 1.637						
HCM Control Delay (s)	83.8	9.2	0	-	10.7	0		\$ 418.1						
HCM Lane LOS	F	A	A	-	B	A		- F						
HCM 95th \%tile Q(veh)	2	0.1	-	-	0.3	-	-	- 11.4						
Notes														
$\sim:$ Volume exceeds capacity	\$: Dela	ay exc	ds 3		+: Comp	utation	Not D	Defined	*: All	major v	olume			

HCM 2010 TWSC
12: Timmer Springs/Trimmer Springs \& Site Access

Intersection						
Int Delay, s/veh						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		\uparrow			\pm
Traffic Vol, veh/h	77	8	31	22	3	83
Future Vol, veh/h	77	8	31	22	3	83
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	82	82	82	82	82	82
Heavy Vehicles, \%	12	12	12	12	12	12
Mvmt Flow	94	10	38	27	4	101

Appendix I: Near-Term Analysis AM (Synchro)

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	14		1			
Traffic Vol, veh/h	14	1	96	89	11	10
Future Vol, veh/h	14	1	96	89	11	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	70	70	70	70	70	70
Heavy Vehicles, $\%$	12	12	12	12	12	12
Mvmt Flow	20	1	137	127	16	14

CIVILENGINEERING, INC

Appendix J: Near-Term Analysis PM (Synchro)

Intersection						
Int Delay, s/veh	3.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7		1			
Traffic Vol, veh/h	77	8	31	22	3	83
Future Vol, veh/h	77	8	31	22	3	83
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	82	82	82	82	82	82
Heavy Vehicles, $\%$	12	12	12	12	12	12
Mvmt Flow	94	10	38	27	4	101

Appendix K: Near-Term Plus Phase One Analysis AM (Synchro)

	4	\rightarrow		7			4	4	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	中t		\%	中t		\%	\uparrow		\%	\uparrow	
Traffic Volume (veh/h)	70	614	6	9	806	101	91	23	71	13	1	6
Future Volume (Veh/h)	70	614	6	0	806	101	91	23	71	13	1	6
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	76	667	7	10	876	110	99	25	77	14	1	7
Pedestrians												
Lane Width (ft)												
Walking Speed (tt/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			TWLTL							
Median storage veh)					,							
Upstream signal (ft)												
pX, platoon unblocked												
VC , conflicting volume	986			674			1288	1828	337	1526	1777	493
vC1, stage 1 conf vol							822	822		951	951	
$\mathrm{vC2}$, stage 2 conf vol							466	1006		575	826	
vCu , unblocked vol	986			674			1288	1828	337	1526	1777	493
tC , single (s)	4.2			4.2			7.6	6.6	7.0	7.6	6.6	7.0
$\mathrm{tC}, 2$ stage (s)							6.6	5.6		6.6	5.6	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
po queue free \%	89			99			61	87	88	93	100	99
cM capacity (veh/h)	684			900			257	197	653	211	236	516
Direction, Lane \#	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1	NB 2	SB 1	SB2		
Volume Total	76	445	229	10	584	402	99	102	14	8		
Volume Left	76	0	0	10	0	0	99	O	14	0		
Volume Right	0	0	7	0	0	110	0	77	0	7		
cSH	684	1700	1700	900	1700	1700	257	416	211	450		
Volume to Capacity	0.11	0.26	0.13	0.01	0.34	0.24	0.39	0.25	0.07	0.02		
Queue Length 95th (t)	9	0	0	1	0	0	43	24	5	1		
Control Delay (s)	10.9	0.0	0.0	9.0	0.0	0.0	27.5	16.4	23.3	13.1		
Lane LOS	B			A			D	C	C	B		
Approach Delay (s)	1.1			0.1			21.9		19.6			
Approach LOS							C		C			
Intersection Summary												
Average Delay			2.9									
Intersection Capacity Utilization			51.1\%	ICU Level of Service					A			
Analysis Period (min)			15									

Intersection						
Int Delay, s/veh	1.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1		1			
Traffic Vol, veh/h	21	1	96	111	15	10
Future Vol, veh/h	21	1	96	111	15	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	70	70	70	70	70	70
Heavy Vehicles, $\%$	12	12	12	12	12	12
Mvmt Flow	30	1	137	159	21	14

Appendix L: Near-Term Plus Phase One Analysis PM (Synchro)

Intersection							
Int Delay, s/veh	4.5						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	1	1		-1			
Traffic Vol, veh/h	98	12	31	28	3	83	
Future Vol, veh/h	98	12	31	28	3	83	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, \#	0	-	0	-	-	0	
Grade, \%	0	-	0	-	-	0	
Peak Hour Factor	82	82	82	82	82	82	
Heavy Vehicles, \%	12	12	12	12	12	12	
Mvmt Flow	120	15	38	34	4	101	

Appendix M: Cumulative Analysis AM (Synchro)

	4	\rightarrow	\checkmark	7		4	4	4	7	\pm	$\frac{1}{7}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	中 ${ }^{\text {a }}$		${ }^{1}$	中 ${ }^{\text {a }}$		${ }^{7}$	\uparrow		${ }^{1}$	\uparrow	
Traffic Volume (veh/h)	77	740	7	10	969	122	128	24	101	13	1	13
Future Volume (Veh/h)	77	740	7	10	969	122	128	24	101	13	1	13
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	84	804	8	11	1053	133	139	26	110	14	1	14
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			TWLTL							
Median storage veh)					2							
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	1186			812			1539	2184	406	1834	2122	593
vC 1 , stage 1 conf vol							976	976		1142	1142	
vC 2 , stage 2 conf vol							563	1208		693	980	
vCu , unblocked vol	1186			812			1539	2184	406	1834	2122	593
tC, single (s)	4.2			4.2			7.6	6.6	7.0	7.6	6.6	7.0
tC, 2 stage (s)							6.6	5.6		6.6	5.6	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	85			99			29	81	81	91	99	97
cM capacity (veh/h)	573			797			197	140	589	153	185	444
Direction, Lane \#	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1	NB 2	SB 1	SB 2		
Volume Total	84	536	276	11	702	484	139	136	14	15		
Volume Left	84	0	0	11	0	0	139	0	14	0		
Volume Right	0	0	8	0	0	133	0	110	0	14		
cSH	573	1700	1700	797	1700	1700	197	365	153	406		
Volume to Capacity	0.15	0.32	0.16	0.01	0.41	0.28	0.71	0.37	0.09	0.04		
Queue Length 95th (ft)	13	0	0	1	0	0	112	42	7	3		
Control Delay (s)	12.4	0.0	0.0	9.6	0.0	0.0	58.3	20.6	30.9	14.2		
Lane LOS	B			A			F	C	D	B		
Approach Delay (s)	1.2			0.1			39.6		22.3			
Approach LOS							E		C			
Intersection Summary												
Average Delay			5.3									
Intersection Capacity Utilization			58.7\%		CU Level	Service			B			
Analysis Period (min)			15									

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	14		1			
Traffic Vol, veh/h	14	1	96	89	11	10
Future Vol, veh/h	14	1	96	89	11	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	70	70	70	70	70	70
Heavy Vehicles, $\%$	12	12	12	12	12	12
Mvmt Flow	20	1	137	127	16	14

Appendix N: Cumulative Analysis PM (Synchro)

Intersection						
Int Delay, s/veh	3.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7		1			
Traffic Vol, veh/h	77	8	31	22	3	83
Future Vol, veh/h	77	8	31	22	3	83
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	82	82	82	82	82	82
Heavy Vehicles, $\%$	12	12	12	12	12	12
Mvmt Flow	94	10	38	27	4	101

Appendix O: Cumulative Plus Full Build-out Analysis AM (Synchro)

Intersection						
Int Delay, s/veh	1.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1		1			
Traffic Vol, veh/h	29	4	96	168	19	10
Future Vol, veh/h	29	4	96	168	19	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	70	70	70	70	70	70
Heavy Vehicles, $\%$	12	12	12	12	12	12
Mvmt Flow	41	6	137	240	27	14

Appendix P: Cumulative Plus Full Build-out Analysis PM (Synchro)

Intersection						
Int Delay, s/veh	5.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	* ${ }^{\prime}$		\uparrow			\uparrow
Traffic Vol, veh/h	148	16	31	42	4	83
Future Vol, veh/h	148	16	31	42	4	83
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	82	82	82	82	82	82
Heavy Vehicles, \%	12	12	12	12	12	12
Mvmt Flow	180	20	38	51	5	101

[^0]: Table 2-3: Phase One Production Statistics (Calendar Year 2022)

[^1]:

[^2]: Table A-3: Expansion Factor Calculation
 Table A-3: Expansion Factor Calculation

 Fresno COG (1)
 Fresno COG (1)
 Exp Factor (4)
 (1) Total in Eastbound Direction
 (2) Fresno COG Daily (2015)
 (3) Fresno COG Daily (2035)
 (4) (2035 Value)/(2015 Value)

[^3]: Table A-6: Expansion Factor Calculation
 $\begin{array}{lrr} & 2015 \text { (2) } & 2035 \text { (3) } \\ \text { Fresno COG (1) } & 426 & 490\end{array}$
 Fresno COG (1)
 Exp Factor (4)
 (1) Total in Westbound Direction
 (2) Fresno COG Daily (2015)
 (3) Fresno COG Daily (2035)
 (4) (2035 Value)/(2015 Value)

[^4]: | Table B-3: Expansion Factor Calculation | | |
 | :--- | ---: | ---: |
 | | 2015 (2) | 2035 (3) |
 | Fresno COG (1) | 758 | 758 |
 | Exp Factor (4) | 1.00 | |

 (1) Total in Northbound Direction
 (2) Fresno COG Daily (2015)

 Values: (2035) - (2015). Use (2015)
 (4) (2035 Value)/(2015 Value)

[^5]: | Table B-3: Expansion Factor Calculation | | |
 | :--- | ---: | :---: |
 | | $2015(2)$ | $2035(3)$ |
 | Fresno COG (1) | 758 | 758 |
 | Exp Factor (4) | 1.00 | |

 (1) Total in Northbound Direction
 (2) Fresno COG Daily (2015)

 Values: (2035) < (2015). Use (2015)
 (4) (2035 Value)/(2015 Value)

